
Useful

Logics,

Types,

Rewriting, and their

Automation

Instant Polymorphic Type Systems
for Mobile Process Calculi:

Just Add Reduction Rules and Close
Henning Makholm and Joe Wells

Heriot-Watt University

ESOP’05 – April 8, 2005
Work supported by EU/IST/FET grant 2001-33477 (DART)

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.1/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Mobile process calculi
Mobility and process calculi are used to model and reason
about systems with mobile devices, mobile code,
dynamically changing networks, . . . and to model biological
systems and business processes.

Many such calculi exist:

The π-calculus – and variants

Mobile Ambients – and variants

Safe Ambients, Boxed Ambients, Seal – and variants

Dπ, Higher-order π-calculus – and variants

Join calculus – and variants

There is no obvious best calculus. For different purposes one
may need different calculi, and needs are likely to change.

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.2/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Types for process calculi
Any process and mobility calculus can benefit from having a
type system.

For pinpointing programming errors

To prove that programs or systems are safe

To provide flow information for automatic analyses

Traditionally each new calculus has a type system designed
specifically for it.

We present the re-targetable type system Poly✶ which
automatically adapts to new calculi or variants.

Allows easy experimentation with calculus variants
Just write down your reduction rules. Poly✶ does the rest.

Experimenting with type system features:
Which features do I need to handle this kind of code?

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.3/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Plan
Poly✶ example

Case study: Evolution of calculi

Spatial polymorphism

Theoretical properties

Conclusion

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.4/29

Useful

Logics,

Types,

Rewriting, and their

Automation

An examplePoly✶ type for an ambient term

Term: (x). bin x.0 | 〈a〉.0 |
a
b
0

↪→ b
in a.0 |

a
b
0

↪→

a
b
0 | b

0

Type: b[](x)

<{a}>

a[]

b[]

x:={a}

ROOT

b[]

in x

in a

x:={a}

x:={a}

Black edges with labels define the possible term structure.

Red edges encode flow, which is the same as subtyping.

Green edges encode flow/subtyping with substitutions .

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.5/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Drawing the type graph more compactly
b[](x)

<{a}>

a[]

b[]

x:={a}

ROOT

b[]

in x

in a

x:={a}

x:={a}

When all black edges leading to a node have the same label, we
write the label inside the target node:

(x) b[]

ROOT <{a}>

a[]

b[]

x:={a}

b[]

in x

in a

x:={a} x:={a}

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.6/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Plan
Poly✶ example

Case study: Evolution of calculi

Spatial polymorphism

Theoretical properties

Conclusion

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.7/29

Useful

Logics,

Types,

Rewriting, and their

Automation

The siege of Troy

Term: horse
in Troy

Ulysses
in horse.out horse

Troy
0

Input to Poly✶ type inference tool:

� � � � � � � � � � 	 �
 �

� � � � � � � 	 � � � � �
�

� � �
 � � 	 �

� �
� � 	 � 	 � � �
 � �
 �

� � � � � � � 	 � 	 � � � � � �
�

� � �
 � �

� �
� � 	 �
 � � 	 � � �
 �

� � � � � � � � � � � � �
�

� � � 	 �

� �
� � � � �

� � � � � � � � � � 	 � � � � � �

� ! � � � � � 	 � � � � � � �
�

� � � � � � � �

� � � � �
	 "

�

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.8/29

Useful

Logics,

Types,

Rewriting, and their

Automation

The siege of Troy

Term: horse
in Troy

Ulysses
in horse.out horse

Troy
0

Inferred type:

ROOT

Troy[]

Ulysses[]

horse[]

Ulysses[]horse[]

in horse out horsein Troy

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.9/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Safe Ambients, first try

What if one needed permission to enter and exit ambients?

� � � � � � � � � � 	 �
 �

� � � � � � � 	 � � � � �
�

� � �
 � � 	 � � � � � �
� � � �

�

�

� �
� � 	 � 	 � � �
 � � � �
 �

� � � � � � � 	 � 	 � � � � � �
�

� � �
 � �
 � � � � � � � � � �
�

�

� �
� � 	 �
 � � 	 � � �
 � � �

� � � � � � � � � � � � �
�

� � � 	 � � � � � � � � � � � �
�

�

� �
� � � � � � �

� � � � � � � � � � 	 � � � � � �

� � � �
� � � � � � �

� ! � � � � � 	 � � � � � � �
�

� � � � � � � �

� � � � �
	 � � �
� � � � � �

�

"

�

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.10/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Safe Ambients, first try

What if one needed permission to enter and exit ambients?

Inferred type:

ROOT

Troy[]

Ulysses[]

horse[]

co-in Troy

horse[] in horse

Ulysses[]

out horseco-in horse

in Troy

Hmm. This seems to work. Or does it?

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.11/29

Useful

Logics,

Types,

Rewriting, and their

Automation

The first try did not work

Unfortunately, Ulysses is rather clever.

If the horse can use the “co-in Troy”, then so can he.

� � � � � � � � � � 	 �
 �

� � � � � � � 	 � � � � �
�

� � �
 � � 	 � � � � � �
� � � �

�

�

� �
� � 	 � 	 � � �
 � � � �
 �

� � � � � � � 	 � 	 � � � � � �
�

� � �
 � �
 � � � � � � � � � �
�

�

� �
� � 	 �
 � � 	 � � �
 � � �

� � � � � � � � � � � � �
�

� � � 	 � � � � � � � � � � � �
�

�

� �
� � � � � � �

� � � � � � � � � � 	 � � � � � �

� � � �
� � � � � � �

� ! � � � � � 	 � � � � � � �
�

� � � � � � � � � � � � � � �

� � � � �
	 � � �
� � � � � �

�

"

�

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.12/29

Useful

Logics,

Types,

Rewriting, and their

Automation

The first try did not work

Unfortunately, Ulysses is rather clever.

If the horse can use the “co-in Troy”, then so can he.

Inferred type:

ROOT

Troy[]

Ulysses[]

horse[]

Ulysses[]co-in Troy

horse[]

in horse

in Troy

Ulysses[]

out horse

Ulysses[]

co-in horse

in Troy

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.13/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Modern Safe Ambients
It would be better if the permissions say who can enter instead of
where the permission itself is located.

� � � � � � � � � � 	 �
 �

� � � � � � � 	 � � � � �
�

� � �
 � � 	 � � � � � �
� � � �

�

�

� �
� � 	 � 	 � � �
 � � � �
 �

� � � � � � � 	 � 	 � � � � � �
�

� � �
 � �
 � � � � � � � � � �
�

�

� �
� � 	 �
 � � 	 � � �
 � � �

� � � � � � � � � � � � �
�

� � � 	 � � � � � � � � � � � �
�

�

� �
� � � � � � �

� � � � � � � � � � 	 � � � � � �

� � � �
� � ! � � � � �

� ! � � � � � 	 � � � � � � �
�

� � � � � � � � � � � � � � �

� � � � �
	 � � �
� � � � � � �

�

"

�

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.14/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Modern Safe Ambients
It would be better if the permissions say who can enter instead of
where the permission itself is located.

Inferred type:

ROOT

Troy[]

Ulysses[]

horse[]

co-in horse

horse[]

in horse

in TroyUlysses[]

out horse

co-in Ulysses

in Troy

This works!

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.15/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Plan
Poly✶ example

Case study: Evolution of calculi

Spatial polymorphism

Theoretical properties

Conclusion

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.16/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Spatial polymorphism
The core of Poly✶ descends from earlier work on PolyA for
Mobile Ambients [Amtoft, Makholm, Wells].
It inherits the notion of spatial polymorphism:

A single process can have multiple future type
descriptions, depending on where it moves.

Example. Consider the Boxed Ambients term

a
in b | in c

b
x
in a.in y.〈out q〉

c
y
in a.(m)x.out m

If x and y were to enter a simultaneously, 〈out q〉 and
(m)x.out m would communicate, causing a run-time error.
This term’s Poly✶ type verifies this does not happen.

Spatial polymorphism allows a type to express that a can
contain x when found inside one b, or y when found
inside the other, but never both.

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.17/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Spatial polymorphism example

Term:
a
in b | in c

b
x
in a.in y.〈out q〉

c
y
in a.(m)x.out m

Input to type inference tool:

� � � � � � � � � � 	 �
 �

� � � � � � � 	 � � � � �
�

� � �
 � � 	 �

� �
� � 	 � 	 � � �
 � �
 �

� � � � � � � 	 � 	 � � � � � �
�

� � �
 � �

� �
� � 	 �
 � � 	 � � �
 �

� � � � � � � � �

�

� � � 	 � � � � �
�

� � �

� �
� � � � 	 � � � � � � � � �
 �

(4 other communication rules go here)

� � � � � � 	 � � � � � � �

� � 	� 	 � � �
�

� � �
�

� � � � � �

� � 	
�

	 � � �
�

� � � � �
�

� � � �

 �

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.18/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Spatial polymorphism example

Term:
a
in b | in c

b
x
in a.in y.〈out q〉

c
y
in a.(m)x.out m

Inferred type:

(m)^x out m

ROOT a[]

b[]

c[]

<out q>

in b

in c

a[]

x[]

a[]

y[]

x[]

y[]

in a in y

in a

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.19/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Turning off spatial polymorphism

Input to type inference tool:

� � � � � � � � � � 	 �
 �

� � � � � � � 	 � � � � �
�

� � �
 � � 	 �

� �
� � 	 � 	 � � �
 � �
 �

� � � � � � � 	 � 	 � � � � � �
�

� � �
 � �

� �
� � 	 �
 � � 	 � � �
 �

� � � � � � � � �

�

� � � 	 � � � � �
�

� � �

� �
� � � � 	 � � � � � � � � �
 �

(4 other communication rules go here)

� � � � � � 	 � � � � � � �

� � 	� 	 � � �
�

� � �
�

� � � � � �

� � 	
�

	 � � �
�

� � � � �
�

� � � �

 �

� � � � � � � � � � � � � � 	
 �

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.20/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Turning off spatial polymorphism

Inferred type:

(m)^x out m

ROOT a[]

b[]

c[]

<out q>
in b

in c

x[]

y[]

in a in y

in a

out(!!!)

m:=out q

The form “out (!!!)” in the red circle (which would be “out •” in the
paper’s notation) indicates that Poly✶ has detected a possible
run-time error, namely an ill-formed substitution result.

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.21/29

Useful

Logics,

Types,

Rewriting, and their

Automation

History polymorphism

History polymorphism allows having multiple type descriptions for
possible processes at a location, depending on where they came
from.

History polymorphism is built on top of spatial polymorphism
using origin marks.

Unfortunately we don’t have time to describe it now. Feel free to
ask us after the session for a demonstration!

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.22/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Plan
Poly✶ example

Case study: Evolution of calculi

Spatial polymorphism

Theoretical properties

Conclusion

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.23/29

Useful

Logics,

Types,

Rewriting, and their

Automation

The metacalculusMeta✶
A single syntax that allows one to write process terms from
many concrete calculi.

Processes: P, Q ::= (P | Q) | 0 | !P

| ν(x).P

| F.P

Forms: F ::= E1 E2 . . . Ek

Elements: E ::= x | (x1, . . . , xk) | <M1, . . . , Mk>

Messages: M ::= 0 | F1. · · · .Fk

Key concept: the form F. Examples:
“in Troy”, “open x”, “〈out a.in b, k〉↑”, “ c(z)”, “a[]”, “q”.

Where are keywords? E.g., in or out? They are names.

Punctuation? “〈out a.in b, k〉↑” ⇒ “ � � � � �
�

� � �
�

� � � �”.

Ambients? Sugar E[P] ⇒ E[].P

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.24/29

Useful

Logics,

Types,

Rewriting, and their

Automation

The usual nice properties of types
Straightforward subject reduction result holds for a large
class of closed type graphs.

In a narrower class, defined by width and depth restrictions,
principal typings exist: Each process term has a best type
that is a stronger predicate on terms than any of its other
types. Our type inference algorithm infers principal typings.

Typing derivations are easily checkable by purely local rules.

It may be difficult to compute a type, but it is easy to
check whether a purported type is good for a term.

In contrast, for non-type-based program analyses,
validating analysis results typically costs as much as
computing them from scratch.

All properties also hold for interesting restrictions that give
smaller types or faster inference.

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.25/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Answers to common questions
This seems more like program analysis than types.
Answer: There is no clean division between type systems
and other forms of program analysis. Types must become
more detailed to obtain principal typings.

The types seem large compared to the terms they describe.
Answer: Our examples show the most precise version of our
system. Our system can be fine-tuned to trade space for
expressive strength. There are versions of our system with
smaller types that are as crude as previous type systems.

More questions and answers are at
〈http://www.macs.hw.ac.uk/DART/software/PolyStar/FAQ〉

(or Google for “PolyStar type inference FAQ”).

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.26/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Plan
Poly✶ example

Case study: Evolution of calculi

Spatial polymorphism

Theoretical properties

Conclusion

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.27/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Future work
Lift restrictions on calculi

Eliminate current invariant: Names bound by forms never
need to be α-renamed.

Reduction rules that risk breaking this (by moving binders
into each other) are rejected by the system.

Allow more structured messages than just names and “flat”
forms. (This would allow spi-calculus).

Make type-system core stronger

Add some form of single-threadedness tracking.

Incorporate the form of polymorphism commonly used for
the π-calculus. (c(x).ν(k). · · ·)

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.28/29

Useful

Logics,

Types,

Rewriting, and their

Automation

Conclusion
The metacalculus Meta✶ can be instantiated to many
proposed process calculi

The type system Poly✶ applies to each instantiation . . .

. . . and provides spatial polymorphism (or not)

. . . and history polymorphism (or not)

The strength of Poly✶ is adjustable in many orthogonal
dimensions.

A very flexible implementation of type inference is available:
〈http://www.macs.hw.ac.uk/DART/software/PolyStar/〉

(or 〈http://henning.makholm.net/〉 → software → Poly✶)

Thank you

Instant Polymorphic Type Systems for Mobile Process Calculi: Just Add Reduction Rules and Close – p.29/29

	Plan
	Plan
	The siege of Troy
	Safe Ambients, first try
	The first try did not work
	Modern Safe Ambients
	Plan
	Spatial polymorphism example
	Spatial polymorphism example
	Turning off spatial polymorphism
	History polymorphism
	Plan
	Plan

