
Instant Polymorphic Type Systems for Mobile Process
Calculi: Just Add Reduction Rules and Close?

Henning Makholm and J. B. Wells

Heriot-Watt University

Abstract. Many differentmobile process calculihave been invented, and for
each some number of type systems has been developed. Soundness and other
properties must be proved separately for each calculus and type system. We
present thegenericpolymorphic type systemPoly✶ which works for a wide range
of mobile process calculi, including theπ-calculus and Mobile Ambients. For any
calculus satisfying some general syntactic conditions, well-formednessrules for
types are derived automatically from the reduction rules andPoly✶ works other-
wise unchanged. The derived type system is automatically sound (i.e., has subject
reduction) and often more precise than previous type systems for the calculus,
due toPoly✶’s spatial polymorphism. We present an implemented type inference
algorithm forPoly✶ which automatically constructs a typing given a set of re-
duction rules and a term to be typed. The generated typings areprincipal with
respect to certain natural type shape constraints.

1 Introduction

Many calculi that intend to capture the essence ofmobileanddistributedcomputing
have been invented. The most well-known of these are probably the π-calculus [18]
and theMobile Ambientscalculus (MA) by Cardelli and Gordon [8], but they havein-
spired the subsequent development of a wide variety of variants and alternatives, which
are variously argued to be easier to program in or reason about, and/or closer to some
operational intuition about how programs in a mobile, distributed setting can be imple-
mented. The field stays productive; new calculi are still being proposed and there is not
a clear consensus about what should be consideredthefundamental mobility calculus.

The majority of these calculi share the basic architecture of MA: They borrow from
theπ-calculus the syntactic machinery for talking about sets ofparallel, communicating
processes, plus its primitive operatorν for generating unique names. To this they add
some kind ofspatial structure, usually in the form of a tree of locations where processes
can reside. The tree can generally evolve under program control as the processes in it
execute; the different calculi provide quite different primitives for mutating it. Mobil-
ity calculi also provide forcommunicationbetween processes that are near each other,
usually modelled on the communication primitive of theπ-calculus, but again with vari-
ations and often extended with the possibility to communicate “capabilities”, “paths”,
or other restricted pieces of process syntax, rather than just names.

Most process calculi have an associatedtype system, either one that was designed

? Supported by EC FP5/IST/FET grant IST-2001-33477 “DART”, and Sun Microsystems equip-
ment grant EDUD-7826-990410-US.

with the calculus from the beginning, or one that was retrofitted later. These type sys-
tems are closely tied to a specific calculus and its particular primitives. Once a type
system has been designed and its properties (such as soundness or the applicability of a
particular type inference algorithm) have been proved, it is in general not trivial to see
whether these properties will survive changes to the calculus.

1.1 A generic type system.In contrast, this paper presents thegenerictype system
Poly✶ which works for a wide range of mobile process calculi. To usePoly✶, one
simply instantiates it with the reduction rules that specify the semantics of the target
calculus’s primitives. From this, a set of provably sound well-formedness rules for types
can bemechanicallyproduced, guaranteeing that types that satisfy the rules are sound
with respect to the reduction rules, i.e., subject reduction holds. The reduction rules
can also be used to guide an automatictype inferencealgorithm for the instantiated
type system. The inference algorithm produces a type which is principal with respect
to certain natural constraints on the shape of types. Our implementation offers several
possibilities for tuning theprecisionof the type system it implements, but the use of
these is optional — it will always produce a typing even when given only the raw
reduction rules of the target calculus.

For this to work, the target calculus must make one small concession toPoly✶,
namely that itssyntaxis sufficiently regular that the implementation can make sense of
its terms and reduction rules. We define ametacalculusMeta✶ which gives a syntax
that is easy to parse and manipulate, while flexible enough that many calculi can be
viewed as instances of it without deviating much from their native notations.Meta✶
does not include any fixedsemanticsexcept for the usual semantics of parallelism and
name restriction, but instead provides a common notion of substitution and a notation
for rewriting rules that fits how semantics for process calculi are usually defined.

1.2 Poly✶’s relation to other reasoning principles. A long-term goal ofPoly✶ is
to make it possible to view many previously existing mobility calculi type systems as
instances ofPoly✶, at least with regards to using the type system to staticallyverify that
certain bad behaviours do not occur. The design we present here does not quite reach
that point; there are features of existing type systems thatwe have not yet incorporated
in Poly✶. We believe it will be particularly important to express some form of thesingle-
threadedlocations introduced by the original type system for Safe Ambients [16].

We do not expect actual programming environments based on mobility calculi to
use the fully generalPoly✶ formalism as their type discipline. Considerations of per-
formance and integration will generally dictate that production environments instead
use hand-crafted specialised type systems for the languagethey support, thoughideas
from Poly✶ may well be employed.

A generic implementation ofPoly✶, such as the one we present here, should be a
valuable tool forexploring the design spacefor mobility calculi in general. It will make
it easy to change some aspect of one’s rewriting rules, try toanalyse some terms, and
see which effect the new rules have on, for example, the interference-control properties
of one’s calculus. At the same time, ourPoly✶ implementation makes it easy to exper-
iment with exactly how strong a type system one wants to use inpractice, because our

implementation supports tuning the precision of types in very small steps.1

Like every nontrivial type system with an inference algorithm, Poly✶ can be used
as acontrol/data flow analysisto provide the substratum for more specialised automatic
program analyses.2 (Readers who are uncomfortable about applying the term “type sys-
tem” to Poly✶ are invited to think “versatile program analysis framework” each time
we write “type system”.) However, we have no pretension of subsuming all other anal-
ysis techniques for mobility or process calculi in general.Process calculi have provided
the setting for many advanced techniques for reasoning about, for example, behavioural
equivalence of processes.Poly✶ does not claim to compete with these.

1.3 Spatial polymorphism. ThePoly✶ type system descends from (but significantly
generalises and enhances) our earlier work [2] onPolyA, a polymorphic type system
specific to Mobile Ambients. It inherits fromPolyA the difference from most other type
systems for mobility calculi that the emphasis is on types for processesrather than types
for (ambient or channel)names.3 In fact, types for names have completely vanished: A
name has no intrinsic type of its own, but is distinguished solely by the way it can be
used to form processes.

Poly✶ works by approximating the set of terms a given term can possibly evolve to
using the given reduction rules. Its central concept is thatof ashape predicatewhich is
an automaton that describes a set of process terms. Shape predicates that satisfy certain
well-formedness rules aretypes. These rules are derived from the reduction rules of the
target calculus and guarantee that the set of terms denoted by a type is closed under the
reduction relation, i.e.,subject reductionholds.

This design gives rise to a new (withPolyA) form of polymorphism that we call
spatial polymorphism. The type of a process may depend on where in the spatial
structure it is found. When the process moves, it may come under influence of another
part of the type which allows more reductions. For example, consider a calculus which
has the single reduction rulea[eat b|P]|b[Q] ↪→ a[P|b[Q]]. In this calculus, the term
x[eat z1|eat z2]|y1[eat x|z1[0]]|y2[eat x|z2[0]] has aPoly✶ type, shown in Figure 1,
that says thatx[] may containz1[] when it it insidey1[], or z2[] when it it insidey2[], but
can contain neither when it is found at the top level of the term. ThusPoly✶ can prove
that the term satisfies the safety policy thatz1 andz2 may never be found side by side.
To our knowledge, type systems based on earlier paradigms cannot do this.

With spatial polymorphism,movementis what triggers the generation of a poly-
morphic variant of the original analysis for a piece of code.This is different from, and
orthogonal to, the more conventional form of name-parametric polymorphism in the
polymorphicπ-calculus [24], where it iscommunicationthat causes polymorphic vari-
ants to be created.Poly✶ does not support the latter form of polymorphism (and neither

1 These fine tuning options are omitted from this paper due to lack of space, but they are de-
scribed in detail in the implementation’s documentation.

2 Indeed it is well known [20, 3] that the difference between an advanced flow analysis and an
advanced type system is often just a question of different perspectives on the same underlying
machinery. The presentation ofPoly✶ is closer to the data-flow viewpoint than is common for
type systems, though this of course does not makePoly✶ any less a type system.

3 There are a number of type systems for process calculiwithoutan explicit notion of locations
which assign types to processes rather than names, for example [4, 14, 27, 11].

⇒

active{ P in x[P] }

reduce{ a["eat" b|P] | b[Q] --> a[P|b[Q]] }

analyse{ x[eat z1 | eat z2]

| y1[eat x | z1[]]

| y2[eat x | z2[]] }

Fig. 1. Input to our type inference implementation for analysing a term in the fictional “eat cal-
culus”, and the inferred type graph as rendered by the VCG graph layout tool [23] (the dashed
lines represent subtyping edges).

does any type system for a mobility calculus with explicit locations that we are aware
of); we leave it to future work to try to combine the strengthsof these two principles.

1.4 Notation and preliminaries. X , whereX is any metavariable symbol, stands
for the set thatX ranges over.Pfin(A) is the set of finite subsets of the setA. A fin→B
is the set of finite partial maps fromA to B. Dom f is the set ofx’s such thatf (x) is
defined. In contexts where a sequence of similar objects are indexed with indexes up to
k, it is to be understood thatk can be any integer≥ 0. Thus, if the first index is 0, the
sequence must have at least one element; sequences indexed from 1 tok may be empty.

2 Meta✶: A metacalculus of concurrent processes

The metacalculusMeta✶ defined in this section is thesyntacticsetting forPoly✶. Its
role is to let us present the generic properties ofPoly✶ without resorting to handwaving.
Though we define a reduction relation and some other formal properties forMeta✶,
these exist solely as support for making formal statements about Poly✶. We do not
intendMeta✶ to take the place of any existing calculi or frameworks.

As a first approximation,Meta✶ is a “syntax without a semantics” except that it
does give semantics to a few basic constructs, e.g., processreplication and substitution.

2.1 Terms. Figure 2 shows the syntax of process terms inMeta✶. The trivial process
0, parallel composition of processesP|Q, process replication!P, and name restriction
ν(x).P are all well-known from most process calculi, includingπ-calculus and MA.
They are given their usual behaviour by the structural congruence relation≡.

Meta✶ amalgamates all other process constructors into the general concept of a
form . Forms have no intrinsic meaning until a set of reduction rules give them one.
Examples of forms include the communication actions “x<y>” and “x(y)” from the
π-calculus, the movement capabilities “in x”, “ out x”, and “open x” from Mobile Am-
bients, and even ambient boundaries themselves, which we write as “x[]”. We support
the traditional syntax “x[P]” for ambients by interpreting “E1 . . .Ek[P]E′

1 . . .E′
k′” as syn-

tactic sugar for “E1 . . .Ek[]E′
1 . . .E′

k.P”. Except for this syntactic convention, the sym-
bol [] has no special interpretation inMeta✶ and it is a (single) name just likein and

Names: x,y ::= a | b . . . z | aa | ab . . . eas | eat | eau . . . | [] | ^ | : | * | / . . . | •
Sub-forms: f ::= x0 x1 . . .xk
Messages: M,N ::= f | 0 | M.N
Elements: E ::= x | (x1,x1, . . . ,xk) | <M1,M2, . . . ,Mk>

Forms: F ::= E0 E1 . . .Ek
Processes:P,Q,R ::= F.P | !P | ν(x).P | 0 | (P|Q)

Free and bound names in terms are defined thus (the omitted cases being purely structural):

FN(x) = {x} BN(x) = ∅

FN((x1, . . . ,xk)) = ∅ BN((x1, . . . ,xk)) = {x1, . . . ,xk}
FN(F.P) = FN(F)∪ (FN(P)\BN(F)) BN(F.P) = BN(F)∪BN(P)

FN(ν(x).P) = FN(P)\{x} BN(ν(x).P) = BN(P)

P≡ P P≡ Q =⇒ Q≡ P P≡ Q∧Q≡ R=⇒ P≡ R P|Q≡ Q|P

P| (Q|R) ≡ (P|Q)|R P|0≡ P !P≡ P|!P !0≡ 0

P≡ Q =⇒ F.P≡ F.Q P≡ Q =⇒ !P≡ !Q P≡ Q =⇒ ν(x).P≡ ν(x).Q

P≡ Q =⇒ P|R≡ Q|R x 6∈ FN(F)∧x 6∈ BN(F) =⇒ F.ν(x).P≡ ν(x).F.P

x 6∈ FN(P) =⇒ P|ν(x).Q≡ ν(x).(P|Q)

y 6∈ FN(P) =⇒ ν(x).P≡ ν(y).[x := y]P ν(x).ν(y).P≡ ν(y).ν(x).P

Fig. 2. Syntax ofMeta✶ plus its structural congruence relation

out. The processF.0 can be abbreviated asF .
A form consists of a nonempty sequence ofelements, each of which is either a

name, a binding element, or amessageelement. Names are used to name channels,
ambients, and so on, but also work as keywords that distinguish forms with different
roles in the calculus. A keyword is simply a free name that is matched explicitly by
some reduction rule. Most non-alphanumericASCII characters that do not have any
special meaning (̂, :, *, /, etc.) are also names and so can be used as keywords. With
these we can encode, e.g., annotated communication actionslike “〈M〉∗” or “ (x)y” from
Boxed Ambients [5] using pseudo-TEX notation as the forms “<M>^*” and “(x)^y”.

Binding elements(x1, . . . ,xk) are used to create forms that bind names in the pro-
cess they are applied to. The canonical use of this is for constructing receive actions,
but again the meaning of the form is specified only by the reduction rules. Message
elements<· · ·> allow a form to contain other forms, which — given appropriate reduc-
tion rules for communication — can later be substituted intoprocesses. For technical
reasons we have to restrict the forms contained in message elements in that they cannot
contain message or binding elements themselves. We refer tosuch restricted forms and
their elements assub-forms andsub-elements. In future work we hope to be able to
handle calculi such as the spi-calculus [1] which communicate structured messages.

It is not uncommon for calculi to prefer using an explicit recursion construction
“P ::= rec X.P” to express infinite behaviour rather than the process replication oper-
ator “!”. There are certain technical problems with supporting this directly inMeta✶
(which may however be approachable by novel techniques involving regular grammars
developed by Nielson et al. [19]). In the common case where the target calculus does
not allow location boundaries to come between therecX binder and the boundX, it can

SE x =

x whenx 6∈ DomS

y whenS(x) = y for somey

• otherwise

SM x =

{

S(x) whenx∈ DomS

x otherwise

SP(ν(x).P) = ν(x).SPP SP(x.P) =

{

S(x)∗(SPP) whenx∈ DomS

x.(SPP) otherwise

(M.N)∗P = M∗(N∗P) 0∗P = P f∗P = f .P

Fig. 3. The actions of term substitution.SM is the action on messages,SE the action on elements,
SF on (sub)forms, andSP on processes. The omitted cases (including the one forSF) simply
substitute componentwise into the syntactic element in question. The M∗P helper operator serves
to linearise messages once we do not need to keep track of whether they are composite or not. (In
other systems, this is often done by the structural congruence relation instead.)

easily be simulated inMeta✶ by adding the reduction rulespawn a| rec a.P ↪→ P and
then representingrec X. · · · .X asν(x).(spawn x|!rec x. · · · .spawn x).

2.2 Well-scoped terms.The process termP is well scopediff it contains no nested
binding of the same name and none of its free names also appearbound in the term.
Formally, it is required that (1) BN(P) and FN(P) are disjoint, (2) wheneverP contains
F.Q, BN(F) and BN(Q) are disjoint, and (3) wheneverP containsν(x).Q, x 6∈ BN(Q).

We generally require that terms are always well scoped. The reduction rules in an
instantiation ofMeta✶ must preserve well-scopedness. This simplifies the type analysis
because then we do not have to supportα-conversion of ordinary binding elements.

We must still handleα-conversion of private names, which is built into the≡ rela-
tion, but we will assume that it is not used to create terms that are not well scoped.

2.3 Substitutions. Substitutions inMeta✶ substitutemessagesfor names. The fact
that entireprocessescannot be substituted is an important technical premise ofPoly✶;
it means that substitution can preserve well-scopedness. It is remarkable that mobility
calculi in general refrain from substituting processes; calculi such as Seal [25] andM3

[12] which allow exchange of entire processes do it by localmovementrather thansub-
stitution. This probably reflects the intuition that a running processis harder to distribute
across a recipient process than a mere name or code sequence.

A (term) substitution S is a finite map from names to messages. Figure 3 de-
fines the action ofS on the various syntactic classes ofMeta✶. In Mobile Ambi-
ents and its descendant calculi, the value exchanged in a communication operation can
be either a name or a (sequence of) capabilities. The former is the case in reduction
〈b〉 | (a).outa.0 ↪→ outb.0 and the latter in〈inb〉 | (a).x[a.inc.0] ↪→ x[inb.inc.0]. To
support this, Fig. 3 contains special cases for the syntactic casesM ::= F andP ::= F.P
when the formF is a lone name. In that case the substitution for the name is inserted
directly into the message (or process structure).

In cases like{a 7→ b}Px[out a.0] where the substituted name occurs properly inside
a form, the substitution is carried out componentwise for each form element, and the
name is replaced in the rule forSE x. In this context the replacement must be a name

too. This will be false if the term tries to reduce as〈inb〉 | (a).outa.0 ↪→ out(inb).0.
The published formalisms of most ambient-inspired calculiusually regard “out(inb)”
assyntacticallypossible butsemanticallymeaningless. That this configuration cannot
occur is often the most basic soundness property of type systems for such calculi.

In Meta✶ such a semantic error becomes a syntactic one: It is simply not possible
to use an entire form as an element (except indirectly through a message element). If,
at runtime, a substitution nevertheless tries to do so, we substitute the special name “•”,
which is to be interpreted as, “an erroneous substitution happened here”. Thus, with
the MA communication rule,Meta✶ reduces<in b>.0 | (a).out a.0 ↪→ out•.0. This
convention is technically convenient because it allows us to bound the nesting depth
of forms (using the sub-form restriction). Because most published calculi attach no
semantics to forms like “out(inb)”, we do not lose any real expressiveness.

Forms that contain• are inert inMeta✶ unless there are reduction rules that explic-
itly match on•. The calculus designer can also define reduction rules that create•’s in
other situations to mark reduction results as “erroneous”.For example, in the polyadic
π-calculus, it is usually considered a run-time error if someone tries to send anm-tuple
on a channel where another process is listening for ann-tuple, with n 6= m. By writ-
ing explicit rules4 for such situations, they can be handled in parallel with malformed
substitutions. (One cannot straightforwardly write patterns to test for malformed sub-
stitutions, which is one reason for building the generationof • into Meta✶).

In either case, thePoly✶ type system will conservatively estimatewhether(and
where) a• can occur. Which conclusions to draw from this (e.g., rejecting the input
program due to “type error”) is up to the designer of the calculus.

The definitions in Figure 3 do not worry about name capture. Ingeneral, therefore,
SX X is only intuitively correct if BN(X) is disjoint from the names mentioned inS. In
practise, this will always follow from the assumption that all terms are well scoped.

2.4 Reduction rules. Figure 4 defines most of the syntax and semantics of reduction
rules forMeta✶. Our full theory (and implementation) allows a slightly more expressive
template language to the right of the arrow inreduce rules, but the subset we present
here is sufficient to express the calculi listed in Sect. 2.5.

As an example, with this syntax we can describe Mobile Ambients by the ruleset

RMA =
{

active{P in a[P]},
reduce{a[inb.P|Q]|b[S] ↪→ b[a[P|Q]|S]},
reduce{a[b[outa.P|Q]|S] ↪→ a[S]|b[P|Q]},
reduce{opena.P|a[R] ↪→ P|R},
reduce{<M>.P|(a).Q ↪→ P|{a := M}Q}

}

These five rules are all that is necessary to instantiateMeta✶ to be Mobile Ambients.5

The fourreduce rules directly correspond to the reduction axioms of the target calcu-
lus. The ruleactive{P in a[P]} is theMeta✶ notation for the “evaluation context” rule

4 E.g.,reduce{<M1,M2>.P|(x1,x2,x3).Q ↪→•.0} for (m,n) = (2,3). Our implementation pro-
vides an extension for writing a single rule that catches all pairs(m,n) at once.

5 The rules are not sufficient to get communication reduction with arbitraryarity. Our imple-
mentation provides a syntax for defining arbitrary-arity communication rules, but for reasons
of space and clarity we omit it in our formal development.

Name variables: ˚x ::= a | b | c | · · ·
Message variables: ˚m ::= M | N | · · ·
Process variables: ˚p ::= P | Q | R | · · ·

Substitutes: s ::= x̊ | m̊
Element templates:E ::= x̊ | x | (x̊1, . . . , x̊k) | <m̊1, . . . ,m̊k>

Forms templates: F ::= E0 E1 . . .Ek
Process templates:P ::= p̊ | F .P | 0 | (P1|P2)

| {x̊0 := s0, . . . , x̊k := sk} p̊ (R)

Rules: R1 ::= reduce{P1 ↪→ P2} | active{p̊ in P}

Rulesets: R ∈ Pfin(R1)

The syntactic choice marked(R) is allowed only in areducerule to theright of the arrow.

Let an term instantiation V map x̊ to x \ {•}, m̊ to M , and p̊ to P . It applies to
templates strictly componentwise, except for the case that fills in and appliesa substitution:

VP({. . . , x̊i := si , . . .} p̊) = {. . . ,V(x̊i) 7→ V(si), . . .}
P(V(p̊))

As a special exception,VPP is consideredundefinedif V(x̊1) = V(x̊2) for x̊1 6= x̊2 such that
x̊1 occurs inP below a form template containing a binding element(. . . , x̊2, . . .).
For example,{a 7→ x,b 7→ x,c 7→ x} cannot be applied to(a).c.0|(b).c.0, which would
otherwise capture names and produce(x).x.0|(x).x.0.

reduce{P1 ↪→ P2} ∈ R

R ` VPP1 ↪→ VPP2

R ` P ↪→ Q
R ` ν(x).P ↪→ ν(x).Q

active{p̊ in P} ∈ R R ` P ↪→ Q

R ` (V[p̊ 7→ P])PP ↪→ (V[p̊ 7→ Q])PP

R ` P ↪→ Q
R ` P|R ↪→ Q|R

P≡ Q R ` Q ↪→ R
R ` P ↪→ R

Fig. 4. Syntax and semantics of reduction rules.

P ↪→ P′ =⇒ a[P] ↪→ a[P′]. This is, in fact, the only concreteactive rule that we have so
far needed for encoding existing calculi. We might just havehard-coded something like
this rule intoMeta✶, but we find it cleaner not to have any built-in distinction between
“action” forms and “process container” forms in the theory.

The lower half of Figure 4 defines how to derive a reduction relation between pro-
cess terms from a ruleset. For example, letReat be the ruleset for the fictional calculus
from Fig. 1:Reat=

{

active{P in a[P]}, reduce{a[eatb|P]|b[Q] ↪→ a[P|b[Q]]}
}

. We
can then instantiate the first inference rule in the bottom third of Fig. 4 to obtain

Reat` y1[eat x| z1[0]]| x[eat z1| eat z2] ↪→ y1[x[eat z1| eat z2]| z1[0]]

by choosingV to be{a 7→ y1, b 7→ x, P 7→ z1[0], Q 7→ (eat z1| eat z2)}.
A reduction rule must not allow a well-scoped term to reduce to a non-well-scoped

one. In order to guarantee this, the process templates in them must satisfy some scoping
restrictions that are not apparent from the syntax. The restrictions will be satisfied by
most rules that are intuitively sensible; because a preciseunderstanding of how the
restrictions work is not important for a high-level understanding ofMeta✶, we refer to
this paper’s long version [17] for a precise definition.

2.5 Example instantiations. We have checked (using machine-readable rulesets for
our type inference implementation forMeta✶/Poly✶) thatMeta✶ can handleπ-calculus
[18]; Mobile Ambients [8]; Safe Ambients [16] and various variants regarding where
the out capability must be found and which name co-capabilities must refer to (vari-
ants with anonymous co-capabilities also exist [15]); the Seal calculus [25] in the non-
duplicating variation of [10]; Boxed Ambients [5], as well as its “asynchronous” and
“Seal-like” variants (the latter being what later papers most often refer to as BA); Chan-
nelled Ambients [21]; NBA [6]; Push and Pull Ambient Calculus [22]; andM3 [12].

In many of these cases,Meta✶ supports the straightforward way to notate process
terms as flatASCII text, but in some cases the native punctuation of the target calcu-
lus must be changed superficially to conform toMeta✶ conventions about how a form
looks. For example, the original send actionyx from [18] is represented as “y<x>” (but
“/y x” would also have worked), and “enter(x,y)” from [6] becomes “co-enter(x)y”,
because it bindsx in its continuation but usesy to handshake with the entering ambi-
ent. The “n[c1, . . . ,ck;P]” construction in Channelled Ambients [21] can be represented
as “n[cs.(c1.0 | · · ·| ck.0) | ps.P]”. In our ruleset for Mobile Ambients with Objective
Moves [7], the fact that reduction rules cannot inspect the structure of messages forces
us to represent the original “go M.m[P]” as “go.M.m[P]”.

3 Poly✶: Types for Meta✶

3.1 Shape predicates.As described in the introduction,shape predicatesare the
central concept inPoly✶. A shape predicate denotes a set of process terms; certain shape
predicates that are provably closed under reduction aretypes. The full language of shape
predicates is somewhat complex, so let us introduce it piecewise. The basic idea of
shape predicates can be explained simply:A shape predicate looks like a process term.
It matches any process term that can arise by repeatedly duplicating and/or removing
sub-terms of the shape predicate.Here, “duplicating” and “removing” sub-terms means
applying the rewriting rulesπ Ã π|π andπ Ã 0 to any syntactic subterm of the shape
predicate, in addition to using the structural congruence relation for terms.

For example, a shape predicate writtena[inb | inc] | c[0] would match the terms
a[inb | inc]| c[0] (which is identical to the shape predicate) anda[inb]| a[inc]| c[0]
(which arises by duplicatinga[· · ·] and then removing one of thein subterms in each of
the copies). Buta[inb] | c[a[0]] does not match, because duplicating subterms cannot
makea[] appear below ac[]. Neither isinb| inc|c[0] allowed — when removing
thea[] form, the entire subterm below it must be removed.

The type in Fig. 1 can be written in term shape asy1
[

eat x|z1[0]|x[z1[0]|eat z1|

eat z2]
]

| x[eat z1| eat z2]| y2
[

x
[

eat z1| eat z2| z2[0]
]

| eat x| z2[0]
]

.
In practice shape predicates cannot be exactly term-shaped, but it pays to keep this

naive idea in mind as an intuition about what shape predicates are. When we introduce
complications in the rest of this subsection, they should all be understood as “whatever
is necessary to make the naive idea work in practice”.

Replication (!P) is ignored when matching shape predicates. This is sensible be-
cause!P behaves like an infinite number ofP’s running in parallel, and anyfinitenum-
ber ofP’s in parallel match a shape predicate exactly if a singleP does.

Message types: µ ::= { f1, . . . , fk}* | {x}
Element types: ε ::= x | (x1, . . . ,xk) | <µ1, . . . ,µk>

Form types: ϕ ::= ε0 ε1 . . .εk
Node names:X,Y,Z ::= X | Y | Z | · · ·

Type substitutions:T ∈ x fin→ µ

Edges: η ::= X ϕ→Y | X−T→Y
Shape graphs: G ∈ Pfin(η)

Shape predicates:π ::= 〈G|X〉

M 6∈ x M∗0 = f1. f2 . . . fk.0 { f1, . . . , fk} ⊆ { f ′1, . . . , f ′k′}

` M : { f ′1, . . . , f ′k′}* ` x : {x}

` x : x ` (x1, . . . ,xk) : (x1, . . . ,xk)

` M1 : µ1 · · · ` Mk : µk

` <M1, . . . ,Mk> : <µ1, . . . ,µk>

` E0 : ε0 · · · ` Ek : εk

` E0 . . .Ek : ε0 . . .εk

(X ϕ→Y) ∈ G ` F : ϕ ` P : 〈G|Y〉

` F.P : 〈G|X〉

` P : π
` !P : π

` P : π ` Q : π
` P|Q : π ` 0 : π

Fig. 5.The syntax and semantics of shape predicates. Edges of the form X−T→Y do not influence
the semantics of the shape predicate; Sect. 3.2 explains what they are for.

We want to represent all possible computational future of each term smashed to-
gether in a single shape predicate. This creates problems for the naive idea, because
terms such as!x[eat x] can evolve to arbitrary deep nestings ofx[· · ·]. Therefore we
need shape predicates to beinfinitely deep trees. We restrict ourselves to infinite shape
predicates with finiterepresentations— in other words, regular trees.

There are several known ways of representing regular trees as linear syntax, but we
have found it easier to work directly withgraphs. A shape predicate now has the form
〈G|X〉, whereG is a directed (possibly cyclic) graph where each edge is labelled with a
form, andX is a designated root node in the graph. A term matches the shape predicate
if its syntax tree can be “bent into shape” to match a subgraphsuch that each form in the
term lies atop a corresponding edge in the graph (edges may beused more than once),
and groups of parallel composition,!, and0 lie within a single node in the graph.

The formal structure ofPoly✶ uses graphs where node names are just opaque identi-
fiers and the meaning is given by edge labels. Whendisplayingthe graphs (as in Fig. 1)
we have found it useful to put each edge label inside the edge’s target node. Of course
this can’t be done in the rare cases when two edges that share atarget disagree.

Graphs alone are not enough to guarantee a finite type for every term. For example,
the term<x> | !(y).<y.y> can (given the reduction rules of MA) evolve into terms
with messages that contain arbitrarily long chains ofx’s within a single form. We need
to abstract over messages such that an infinity of forms that look alike except having
messages of different length within them can be described bythe same shape graph
label. This is the job ofmessage typesµ, which are defined in Figure 5.

The message type{ f1, . . . , fk}* describes any message built from the any of forms
fi — exceptmessages that are single names; such a message is matched by the mes-
sage type{x} instead. When{x} is theonly message type that matchesx, we can see
unambiguously from a message type whether• will result from trying to substitute a
message it matches into an element position. We useelement typesε andform types
ϕ to build form-like structures out of message types and non-message elements.

The syntax and semantics of shape predicates is defined in Figure 5. To save space
and present the basic theory more clearly we do not handlename restriction; how to
treat it is described in [17]. We have also omitted a third form of message types, se-
quenced message types, which allow more precise types and are defined in [17, sec. 5.2].

Define themeaningof message/element/form types and of shape predicates by

[[µ]] = {M | `M : µ} [[ε]] = {E | `E : ε} [[ϕ]] = {F | ` F : ϕ} [[π]] = {P | `P : π}

Proposition 3.1. The meanings of shape predicates respect the structural congruence:
If P ≡ Q then` P : π ⇐⇒ ` Q : π for all π.

Let µ1 ∗µ2 be the least message type whose meaning includesM.N for all M ∈
[[µ1]],N∈ [[µ2]]. With the language of message types presented here (omitting sequenced
message types from [17]),µ1∗µ2 always has the form{ f1, . . . , fk}*, where thefi ’s are
all the sub-forms that appear in eitherµ1 or µ2 in some canonical order (for this purpose
the sub-formx is considered to appear inµ= {x}). Theµ1∗µ2 operation is associative.

3.2 Flow edges and subtyping.The only part of the shape predicate syntax of Fig-
ure 5 that has yet not been explained is theflow edgesX−T→Y. They are not used at
all in the above definition of themeaningof the shape graph, but they will be impor-
tant for distinguishing between types and non-types. In brief, the flow edgeX−T→Y
asserts that there may be a reduction where a process described byX is moved toY and
in the process incurs a substitution described byT.

Alternatively,X−T→Y can be viewed as ademandthat wheneverP∈ [[〈G|X〉]] and
Q arises by applying a substitution described byT to P, it must hold thatQ∈ [[〈G|Y〉]].
Because flow edges do not contribute to the meaning of shape predicates, there is no
guarantee that this demand is actually satisfied for a shape predicate that contains the
flow edge. This is a global property of the shape graph, and we will shortly define a
class offlow closedshape graphs where the interpretation of flow edges is alwaystrue.

An important special case is whenT = ∅, where the process moveswithout any
substitution. ThenX −∅→Y can also be viewed as an assertion that〈G|X〉 is a sub-
typeof 〈G|Y〉, or, symbolically, that[[〈G|X〉]] ⊆ [[〈G|Y〉]]. We therefore also speak of
X−∅→Y as asubtyping edge.

Write ` S : T iff Dom S = DomT and` S(x) : T(x) for all x∈ DomS.
Define the action of type substitution on subforms and message/element types by

the rules in Figure 6. This definition ensures that[[TM µ]] contains the result of every
termsubstitutionSM M where` S : T and` M : µ, and likewise for elements.

Definition 3.2. The shape graph G isflow closediff whenever G contains Xϕ→Y and
X−T→Z such thatBN(ϕ)∩DomT = ∅, then there is a W such that G contains Y−T→
W and additionally it holds that

T f (x0 . . .xk) =

{

T(x0) whenk = 0 andx0 ∈ DomT

{TE x0 . . .TE xk}* otherwise

TM { f1, . . . , fk}* = {}*∗T
f f1∗· · ·∗T f fk TM {x} =

{

T(x) if x∈ DomT

{x} otherwise

TE x =

{

y whenTM {x} = {y} for somey

• otherwise

TE<µ1, . . . ,µk> = <TM µ1, . . . ,T
M µk>

TE(x1, . . . ,xk) = (x1, . . . ,xk)

Fig. 6. The action of type substitutions.T f f is the action on subforms,TM µ is the action on
message types, andTE ε is the action on element types.

Let atype instantiation U map x̊ to x \{•}, m̊ to µ , and p̊ to X . It applies to element
and form templates completely componentwise (giving element and form types), just like
term instantiations do. The relation betwen type instantiations and process templates are
given by this inference system:

X = U(p̊)

U ²
L

p̊ : 〈G|X〉

(U(p̊)−∅→X) ∈ G
U ²

R
p̊ : 〈G|X〉

(U(p̊)−...,U(x̊i)7→USsi ,...→X) ∈ G

U ²
R
{. . . , x̊i := si , . . .} p̊ : 〈G|X〉

U ²s 0 : π
U ²s P1 : π U ²s P2 : π

U ²s P1|P2 : π
(X UF F→Y) ∈ G U ²s P : 〈G|Y〉

U ²s F .P : 〈G|X〉

whereUSx̊ = {U(x̊)} andUSm̊= U(m̊). The rules for template processes have anL variant
and anR variant; the variable letters ranges overL andR.

As a special exception,U ²s P : π is not considered to hold ifU(x̊1) = U(x̊2) for x̊1 6= x̊2
such that ˚x1 occurs inP below a form template containing a binding element(. . . , x̊2, . . .).

Fig. 7. Matching of reduction rules to shape graphs.

1. If ϕ = x andT(x) = {y}, then G contains Zy→W.

2. If ϕ = x andT(x) = { f1, . . . , fk}*, then W= Z and G contains Zfi→ Z for 1≤ i ≤ k.

3. If none of the above apply andϕ = ε0 . . .εk, then G contains ZT
E ε0...T

E εk→W.

We call a shape predicate〈G|X〉 flow closed iff its G component is.

Intuitively, a flow-closed graph is one where the intuitive meanings of flow edges
are true. That is the content of the following theorem:

Proposition 3.3. Let G be flow closed and contain X−T→Y. Assume that̀ S : T and
thatBN(P)∩DomT = ∅. Then` P : 〈G|X〉 implies` SPP : 〈G|Y〉

The assumption that BN(P)∩DomT = ∅ will be true in our uses because we are
assuming that all terms are well-scoped.

3.3 Semantic and syntactic closure; types.Call the shape predicateπ semantically
closedwith respect toR iff ` P : π andR ` P ↪→ Q imply ` Q : π.

As described above, we wanttypesto be semantically closed shape predicates. But
it is not easy to recognise semantic closure.6 We will therefore define a restricted, but
easier to decide, class ofsyntacticallyclosed shape predicates, which will be the types.

Figure 7 defines a way to match process templates directly to type graphs without
going via the process semantics from Fig. 4. A type instantiation applies to message,
element, and form templates much like theV’s in Fig. 4, but the process part is different
because a type instantiation maps process metavariables tonodes in the shape graph
rather than processes. This is best illustrated with an example. Assume we wish to find
out whether〈G0 |R〉 is closed with respect toReat, where

G0 =

R t[]→ X p[]→ Y eat q→ Z foo→ T

W V bar→ U

S

q[]

s[]

q
[]

Reat has only onereduce rule, and we look for matches of its left-hand side, that is
(X0,U0) such thatX0 can be reached from the root by edges with labels of the shape
x[] andU0 ²

L
a[eatb|P]|b[Q] : 〈G0 |X0〉. The only such pair is

X0 = X, U0 = {a 7→ p, b 7→ q, P 7→ Y, Q 7→ W}

For the graph to be syntactically closed, the sameX andU0 must match theright-hand
side of the rule, i.e.U0 ²

R
a[P|b[Q]] : 〈G0 |X〉. This turns out not to be true; if one tries

to construct at derivation it turns out that the judgementU0 ²
R
Q : 〈G0 |V〉 is needed, and

that can only be true if(U0(Q) = W−∅→V) ∈ G0 which is not the case.
Thus the graph is not syntactically closed forReat, and indeed it is not semantically

closed either, becauseP1 = t[p[eat q]|q[s[0]]] is in [[〈G0 |R〉]] butP2 = t[p[q[s[0]]]] is not,
even thoughReat` P1 ↪→P2. If we add the missing edge, givingG1 = G0∪{W−∅→V},
we do getU0 ²

R
a[P|b[Q]] : 〈G1 |X〉, butG1 is notflow closed, and we need to add even

more edges to make it so. In the end we get

G2 =

R t[]→ X p[]→ Y eat q→ Z foo→ T

W V bar→ U

S VV

q[]
q
[]

s[]
s[]

where, as in Fig. 1, subtyping edges are shown as dashed lines. The shape predicate
〈G2 |R〉 is syntactically and semantically closed.

We are now ready do define syntactic closure formally:

Definition 3.4. Let the shape predicateπ = 〈G|X〉 be given. The set ofactivenodes for
R, writtenactiveR(π), is the least set A of nodes which contains X and such that for all
Y ∈ A and allactive{p̊ in P} ∈ R, it holds thatU ²

L
P : 〈G|Y〉 impliesU(p̊) ∈ A.

6 E.g., letG =
{

Y1←c Y0←
b

b→ X0 (a)<{b}*>→ X1 a→ X2 b→ X3 a→ X4 c→ X5
}

. Then

〈G|X0〉 happens to be semantically closed with respect to
{

reduce{(a)<M>.P ↪→{a := M}P}
}

,
but it is not trivial to see this in a systematic way.

Definition 3.5. G is locally closedat X with respect toR iff wheneverR contains
reduce{P1 ↪→ P2} it holds thatU ²

L
P1 : 〈G|X〉 impliesU ²

R
P2 : 〈G|X〉.

Definition 3.6. The shape predicateπ = 〈G|X〉 is syntactically closedwith respect to
R iff G is flow closed and also locally closed at every X∈ activeR(π). When this holds,
we callπ an (R-)type.

Checking that a purported type is really syntactically closed is algorithmically easy;
see [17] for details.

Theorem 3.7 (Subject reduction).If π is syntactically closed with respect toR, then
it is also semantically closed with respect toR.

3.4 What to do with types. Once we have a type, what can we use it for? An obvious
possibility is to check whether the term may “go wrong”. The user (or, more likely, the
designer of a programming environment that usesPoly✶) specifies what “going wrong”
means. It is a clear indication of error if• turns up in an active position, but opinions
may differ about if a• is produced at a place in process tree that never becomes active.

One can also imagine very application-specific properties to check for, for example
“this process can never evolve to a configuration where an ambient nameda is inside
one namedb”. This is easy to check for in the shape graph. Alternatively, one may want
to write this as a rule, to havePoly✶ do the checking:reduce{b[a[P]|Q] ↪→ •.0}. The
ability to write such rules is one of the reasons whyMeta✶ does not distinguish strictly
between “names” and “keywords”.

Poly✶ makes it fairly easy to checksafety propertieslike “no unauthorised ambi-
ents (e.g.,a) inside secure ambients (e.g.,b)”, but there are also questions of safety
that Poly✶ cannot help determine. This includes properties that depend on theorder
in which things happen, such as the “correspondence assertions” often used to specify
properties of communication protocols. There are type systems for process calculi that
can reason about such temporal properties (for example, [13] for the π-calculus), but
we are aware of none that also handle locations and ambient-style mobility.

4 Type inference forPoly✶

Assume now that we are given a process termP and a rulesetR; we want to produce an
R-type forP. It is trivial to constructsometype forP – one with a single node and a lot
of edges in the shape graph. However, such a type may need to contain•’s and thus not
prove thatP “cannot go wrong”. In this section we discuss how to automatically infer
more informative types.

We do not know how to do type inference that is complete for thefull Poly✶ type
system; it allows too many types. Therefore we begin by defining a set ofrestricted
types, for which wecanhave complete type inference.

Definition 4.1. Write ϕ1 ≈ ϕ2 iff [[ϕ1]]∩ [[ϕ2]] 6= ∅.

The≈ relation is close to being equality. The only way for two non-identicalϕ’s to
be related by≈ is if they contain message types of the shape{ · · ·}*. It is relatively safe
to imagine the≈ is just a fancy way to write=, at least to a first approximation.

Definition 4.2. G satisfies thewidth restriction iff whenever it contains Xϕ→ Y and

X ϕ′
→Y′ with ϕ ≈ ϕ′, it holds that Y= Y′.

Definition 4.3. G satisfies thedepth restrictioniff whenever it contains a chain X0
ϕ1→

X1
ϕ2→ ·· · ϕk→ Xk with ϕ1 ≈ ϕk, it holds that X1 = Xk.

Our type inference algorithm only produces types that satisfy both restrictions. The
width restriction means that when type inference needs to add an outgoing edge from a
node in the graph, it never has to choose between reusing an existing edge starting there
and creating a new edge with a fresh target node, because the latter is forbidden by
the restriction when there is any reusable edge. The depth restriction bounds the length
of a simple path in a shape graph that can be constructed with agiven set of names
and a given maximal form arity, and so also bounds the total number of nodes in the
graph. Therefore the closing operation described below cannot keep adding edges and
nodes to the graph indefinitely and will eventually stop. (These two restrictions replace
the notions of “discrete” and “modest” types in [2], which sometimes admitted slightly
more precise types, but were very complex and hard to understand).

In [17] we describe a feature of our implementation which allows it to loosen the
two restrictions by tracking the origin of eachϕ in the type graph.

The type inference proceeds in two phases. First we construct a minimal shape
predicate which the term matches. Then weclosethe shape predicate — that is, rewrite
its shape graph as necessary to make it syntactically closed.

The initial phase is simple. Because shape predicates “looklike terms”, we can just
convert the abstract syntax tree of the term to a tree-shapedshape graph. This graph
may or may not satisfy the width and depth restrictions. If itdoes not, unify the nodes
that must be equal.7 That may cause further violations of the two restrictions; continue
unifying nodes as necessary until the restrictions are satisfied.

The closing of the shape graph is where the real work of type inference happens. It
happens in a series of steps. In each step, check whether the shape graph is syntactically
closed. If it is, the algorithm ends. Otherwise, the lack of closure can only be because
edges already in the graph imply that some other edgesought to exist (by Definitions
3.2 or 3.5) but do not. In that case, add the new nodes and edgesrequired by the failing
rule, and do another round of unifications to enforce the width and depth restrictions.

The width and depth restriction together guarantee that theclosure phase terminates.
We do not have any good worst-case complexity bounds for the closure phase; instead
our implementation allows further restrictions on types tobe applied in order to quench
blow-ups one might observe with particular calculi and example terms. The tightest
restrictions will enforce polynomial complexity, at the cost of losing the possibility
of spatial polymorphism. Thus restricted,Poly✶ has a strength roughly comparable to
current non-polymorphic type systems for ambient-derivedcalculi.

Theorem 4.4 (Principal typings).A result of type inferenceπ is a principal typing
[26] for the input term P: For everyπ′ such that̀ P : π′ it holds that[[π′]] ⊇ [[π]].

7 This is the only way to reach a graph that satisfies the restrictions. If the widthand depth
restrictions had used= instead of≈, there might also have been the option of rewriting aϕ to
something larger but different, but there would not be a unique “best way” of doing that.

4.1 Implementation. We have implemented our type inference algorithm. Our im-
plementation is available at the URL〈http://www.macs.hw.ac.uk/DART/software/
PolyStar/〉, as both a source download and an interactive web interface.

Beyond the features in this paper, our implementation allows fine-tuning of the anal-
ysis precision, which influences inference speed as well as inferred type size.

5 Conclusion

Poly✶ extends basic properties of our previous systemPolyA to a more general setting:

1. Poly✶ hassubject reduction. Also, given a process termP and a shape predicateπ,
one can decide by checking purely local conditions whetherπ is a type, and it is
similarly decidable whetherP matchesπ. Thus, it is decidable whether a process
belongs to a specific type.

2. Poly✶ supports a notion ofspatial polymorphismthat achieves what Cardelli and
Wegner [9] called “the purest form of polymorphism: the sameobject or function
can be used uniformly in different type context without changes, coercions or any
kind of run-time tests or special encodings of representations”.

3. The types ofPoly✶ are sufficiently precise that many interestingsafety/security
propertiescan be checked, especially those that can be formulated as questions on
the possible configurations that can arise at run-time.

In addition, this paper makes these completely novel contributions:

4. Meta✶ is a syntactic framework that can be instantiated into a large family of mo-
bile process calculi by supplying reduction rules.

5. Thegeneric type systemPoly✶ works for any instantiation ofMeta✶. We have
checked that it works forπ-calculus, a large number of ambient calculi, and a ver-
sion of the Seal calculus. In [2] we claimedPolyA would be easy to extend to
ambient-like calculi by hand, but extending the proofs forPolyA manually would
be tedious. WithMeta✶ we have developed the theory to do such extensions fully
automatically.

6. For the subsystem ofPoly✶ satisfying thewidth and depthrestrictions, there is
a type inference algorithm (which we have implemented) thatalways successfully
infers aprincipal typefor any process term. This means thatPoly✶ has the potential
for compositional analysis.

7. The width and depth restriction are more natural and intuitive than the “discrete-
ness” and “modesty” properties with respect to which we showed existence of prin-
cipal types forPolyA.

8. Poly✶’s handling ofcommunicationand substitutionhas been redesigned to be
more direct and intuitive than inPolyA.

5.1 Related work. Another generic type system for process calculi was constructed
by Igarashi and Kobayashi [14]. Like the shape predicates inPoly✶, their types look like
process terms and stand for sets of structurally similar processes. Beyond that, however,
their focus is different from ours. Their system is specific to theπ-calculus and does
not handle locations or ambient-style mobility. On the other hand, it is considerably

more flexible thanPoly✶ within its domain and can be instantiated to do such things as
deadlock and race detection which are beyond the capabilities ofPoly✶.

Yoshida [27] used graph types much like our shape predicatesto reason about the
order of messages exchanged on each channel in theπ-calculus. Since this type system
reasoned abouttimerather thanlocation, it is not directly comparable toPoly✶, despite
the rather similar type structure.

The spatial analysis of Nielson et al. [19] produces resultsthat somewhat resemble
our shape graphs, but does not have spatial polymorphism.

References
[1] M. Abadi, A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Inform. & Comput., 148(1), 1999.
[2] T. Amtoft, H. Makholm, J. B. Wells. PolyA: True type polymorphism for Mobile Ambients. InIFIP TC1 3rd Int’l
Conf. Theoret. Comput. Sci. (TCS ’04). Kluwer Academic Publishers, 2004.
[3] T. Amtoft, F. Turbak. Faithful translations between polyvariant flows and polymorphic types. InProgramming Lan-
guages & Systems, 9th European Symp. Programming, vol. 1782 ofLNCS. Springer-Verlag, 2000.
[4] G. Boudol. Theπ-calculus in direct style. InConf. Rec. POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., 1997.
[5] M. Bugliesi, G. Castagna, S. Crafa. Boxed ambients. In4th International Conference on Theoretical Aspects of
Computer Science (TACS’01), vol. 2215 ofLNCS. Springer-Verlag, 2001.
[6] M. Bugliesi, S. Crafa, M. Merro, V. Sassone. Communication interference in mobile boxed ambients. InFST & TCS
2002, 2002.
[7] L. Cardelli, G. Ghelli, A. D. Gordon. Mobility types for mobile ambients. In J. Wiedermann, P. van Emde Boas,
M. Nielsen, eds.,ICALP’99, vol. 1644 ofLNCS. Springer-Verlag, 1999. Extended version appears as Microsoft Research
Technical Report MSR-TR-99-32, 1999.
[8] L. Cardelli, A. D. Gordon. Mobile ambients. In M. Nivat, ed.,FoSSaCS’98, vol. 1378 ofLNCS. Springer-Verlag, 1998.
[9] L. Cardelli, P. Wegner. On understanding types, data abstraction, and polymorphism.Computing Surveys, 17(4), 1985.
[10] G. Castagna, G. Ghelli, F. Z. Nardelli. Typing mobility in the Seal calculus. In K. G. Larsen, M. Nielsen, eds.,
CONCUR, vol. 2154 ofLNCS. Springer-Verlag, 2001.
[11] S. Chaki, S. K. Rajamani, J. Rehof. Types as models: Model checking message-passing programs. InConf. Rec. POPL
’02: 29th ACM Symp. Princ. of Prog. Langs., 2002.
[12] M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, I. Salvo. M3: Mobility types for mobile processes in mobile ambi-
ents. InCATS 2003, vol. 78 ofENTCS, 2003.
[13] A. D. Gordon, A. S. A. Jeffrey. Typing correspondence assertions for communication protocols.Theoret. Comput. Sci.,
300(1–3), 2003.
[14] A. Igarashi, N. Kobayashi. A generic type system for the pi-calculus. InConf. Rec. POPL ’01: 28th ACM Symp. Princ.
of Prog. Langs., 2001.
[15] F. Levi, C. Bodei. A control flow analysis for safe and boxed ambients. InProgramming Languages & Systems, 13th
European Symp. Programming, vol. 2986 ofLNCS. Springer-Verlag, 2004.
[16] F. Levi, D. Sangiorgi. Controlling interference in ambients. InPOPL’00, Boston, Massachusetts. ACM Press, 2000.
[17] H. Makholm, J. B. Wells. Instant polymorphic type systems for mobile process calculi: Just add reduction rules and
close. Technical Report HW-MACS-TR-0022, Heriot-Watt Univ., School of Math. &Comput. Sci., 2004.
[18] R. Milner, J. Parrow, D. Walker. A calculus of mobile processes.Inform. & Comput., 100(1), 1992.
[19] H. R. Nielson, F. Nielson, H. Pilegaard. Spatial analysis of BioAmbients. In R. Giacobazzi, ed.,Static Analysis: 11th
Int’l Symp., vol. 3148 ofLNCS, Verona, Italy, 2004. Springer-Verlag.
[20] J. Palsberg, C. Pavlopoulou. From polyvariant flow information to intersection and union types.J. Funct. Programming,
11(3), 2001.
[21] S. M. Pericas-Geertsen.XML-Fluent Mobile Ambients. PhD thesis, Boston University, 2001.
[22] I. Phillips, M. G. Vigliotti. On reduction semantics for the push and pull ambient calculus. InTheoretical Computer
Science: 2nd IFIP Int’l Conf., vol. 223 ofIFIP Conference Proceedings. Kluwer, 2002.
[23] G. Sander. Graph layout through the VCG tool. In R. Tamassia, I. G. Tollis, eds.,Graph Drawing: DIMACS Interna-
tional Workshop, GD ’94, vol. 894 ofLNCS. Springer-Verlag, 1994.
[24] D. N. Turner.The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, University of Edinburgh, 1995.
Report no ECS-LFCS-96-345.
[25] J. Vitek, G. Castagna. Seal: A framework for secure mobile computations. InInternet Programming Languages, vol.
1686 ofLNCS. Springer-Verlag, 1999.
[26] J. B. Wells. The essence of principal typings. InProc. 29th Int’l Coll. Automata, Languages, and Programming, vol.
2380 ofLNCS. Springer-Verlag, 2002.
[27] N. Yoshida. Graph types for monadic mobile processes. InFoundations of Software Technology and Theoret. Comput.
Sci., 16th Conf., vol. 1180 ofLNCS. Springer-Verlag, 1996.

