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Abstract. Many differentmobile process calculhave been invented, and for
each some number of type systems has been developed. Sounddesther
properties must be proved separately for each calculus and typensyate
present thgenericpolymorphic type systefoly[] which works for a wide range
of mobile process calculi, including thecalculus and Mobile Ambients. For any
calculus satisfying some general syntactic conditions, well-formednéss for
types are derived automatically from the reduction rulesRasig] works other-
wise unchanged. The derived type system is automatically sound &isssubject
reduction) and often more precise than previous type systems for lhidusa
due toPoly['s spatial polymorphismWe present an implemented type inference
algorithm for Poly which automatically constructs a typing given a set of re-
duction rules and a term to be typed. The generated typingprareipal with
respect to certain natural type shape constraints.

1 Introduction

Many calculi that intend to capture the essencenobile and distributed computing
have been invented. The most well-known of these are prgltablr-calculus [18]
and theMobile Ambientgalculus (MA) by Cardelli and Gordon [8], but they havein-
spired the subsequent development of a wide variety of Ma&r&nd alternatives, which
are variously argued to be easier to program in or reasontaiad/or closer to some
operational intuition about how programs in a mobile, distted setting can be imple-
mented. The field stays productive; new calculi are stilhggiroposed and there is not
a clear consensus about what should be considasfdndamental mobility calculus.

The majority of these calculi share the basic architectéiddAx They borrow from
thetrcalculus the syntactic machinery for talking about sesavéllel, communicating
processes, plus its primitive operatofor generating unique names. To this they add
some kind ofpatial structureusually in the form of a tree of locations where processes
can reside. The tree can generally evolve under programmatad the processes in it
execute; the different calculi provide quite differentrpitives for mutating it. Mobil-
ity calculi also provide focommunicatiorbetween processes that are near each other,
usually modelled on the communication primitive of tizealculus, but again with vari-
ations and often extended with the possibility to commuteiCaapabilities”, “paths”,
or other restricted pieces of process syntax, rather tretmames.

Most process calculi have an associatgie systemeither one that was designed
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with the calculus from the beginning, or one that was retatfitater. These type sys-
tems are closely tied to a specific calculus and its partiquienitives. Once a type
system has been designed and its properties (such as sssrutrike applicability of a
particular type inference algorithm) have been proved ihigeneral not trivial to see
whether these properties will survive changes to the cadcul

1.1 A generic type system.In contrast, this paper presents tiEnerictype system
Polyd which works for a wide range of mobile process calculi. To Bs¢/[], one
simply instantiates it with the reduction rules that spetife semantics of the target
calculus’s primitives. From this, a set of provably soundvi@medness rules for types
can bemechanicallyproduced, guaranteeing that types that satisfy the ruesand
with respect to the reduction rules, i.e., subject reduchiolds. The reduction rules
can also be used to guide an automé#yice inferencealgorithm for the instantiated
type system. The inference algorithm produces a type wisiphimcipal with respect
to certain natural constraints on the shape of types. Ouleimgntation offers several
possibilities for tuning therecisionof the type system it implements, but the use of
these is optional — it will always produce a typing even whére only the raw
reduction rules of the target calculus.

For this to work, the target calculus must make one small &sgion toPoly[],
namely that itsyntaxis sufficiently regular that the implementation can makeseesf
its terms and reduction rules. We definenatacalculusMetall which gives a syntax
that is easy to parse and manipulate, while flexible enoughrttany calculi can be
viewed as instances of it without deviating much from theitive notationsMetall
does not include any fixesemanticexcept for the usual semantics of parallelism and
name restriction, but instead provides a common notion b$tiution and a notation
for rewriting rules that fits how semantics for process dakme usually defined.

1.2 Poly's relation to other reasoning principles. A long-term goal ofPolyl is
to make it possible to view many previously existing mobpilialculi type systems as
instances oPoly[], at least with regards to using the type system to stativellijy that
certain bad behaviours do not occur. The design we preseatdoes not quite reach
that point; there are features of existing type systemswidiave not yet incorporated
in Poly[. We believe it will be particularly important to express sofarm of thesingle-
threadedlocations introduced by the original type system for Safebfants [16].

We do not expect actual programming environments based dnilitpealculi to
use the fully generaPoly formalism as their type discipline. Considerations of per-
formance and integration will generally dictate that prctthn environments instead
use hand-crafted specialised type systems for the langhagesupport, thougldeas
from Polyd may well be employed.

A generic implementation dPoly[], such as the one we present here, should be a
valuable tool forexploring the design spader mobility calculi in general. It will make
it easy to change some aspect of one’s rewriting rules, tantdyse some terms, and
see which effect the new rules have on, for example, theferece-control properties
of one’s calculus. At the same time, dewly] implementation makes it easy to exper-
iment with exactly how strong a type system one wants to ugpedatice, because our



implementation supports tuning the precision of types ity genall steps.

Like every nontrivial type system with an inference aldumit Poly(J can be used
as acontrol/data flow analysito provide the substratum for more specialised automatic
program analyse$ (Readers who are uncomfortable about applying the terne“sys-
tem” to Poly[d are invited to think “versatile program analysis framewogkch time
we write “type system”.) However, we have no pretension afssuning all other anal-
ysis techniques for mobility or process calculi in gendPabcess calculi have provided
the setting for many advanced techniques for reasoningtgloo@xample, behavioural
equivalence of processd®ly[d does not claim to compete with these.

1.3 Spatial polymorphism. ThePoly[] type system descends from (but significantly
generalises and enhances) our earlier work [2PolyA, a polymorphic type system
specific to Mobile Ambients. It inherits froiolyA the difference from most other type
systems for mobility calculi that the emphasis is on typepfocessesather than types
for (ambient or channehames’® In fact, types for names have completely vanished: A
name has no intrinsic type of its own, but is distinguishelélgdy the way it can be
used to form processes.

Polyd works by approximating the set of terms a given term can pbssiolve to
using the given reduction rules. Its central concept isdhaishape predicatewhich is
an automaton that describes a set of process terms. Shaliespes that satisfy certain
well-formedness rules atgpes These rules are derived from the reduction rules of the
target calculus and guarantee that the set of terms dengi@tlype is closed under the
reduction relation, i.esubject reductiomolds.

This design gives rise to a new (witfolyA) form of polymorphism that we call
spatial polymorphism. The type of a process may depend on where in the spatial
structure it is found. When the process moves, it may comeruntleence of another
part of the type which allows more reductions. For exampaser a calculus which
has the single reduction rutdeat b | P| | b[Q] — a[P | b[qQ]]. In this calculus, the term
x[eatz1 | eat z2] | yl[eat x | z1[0]] | y2[eat x | z2[0]] has aPoly[] type, shown in Figure 1,
that says that[] may contairel[] when it itinsidey1[], orz2[] when it it insidey2[], but
can contain neither when it is found at the top level of thentérhusPoly(] can prove
that the term satisfies the safety policy thhiandz2 may never be found side by side.
To our knowledge, type systems based on earlier paradignmotdo this.

With spatial polymorphismmovements what triggers the generation of a poly-
morphic variant of the original analysis for a piece of cotleis is different from, and
orthogonal to, the more conventional form of name-paramewlymorphism in the
polymorphictecalculus [24], where it isommunicatiorthat causes polymorphic vari-
ants to be create®oly[d] does not support the latter form of polymorphism (and neithe

1 These fine tuning options are omitted from this paper due to lack of spacthdy are de-
scribed in detail in the implementation’s documentation.

2 Indeed it is well known [20, 3] that the difference between an adw@fioes analysis and an
advanced type system is often just a question of different perspectivthe same underlying
machinery. The presentation Bély is closer to the data-flow viewpoint than is common for
type systems, though this of course does not niadte] any less a type system.

3 There are a number of type systems for process calgtiibutan explicit notion of locations
which assign types to processes rather than names, for example %, 14].



active{ P in x[P] }
reduce{ a["eat" b|P] | b[Q] --> a[PIb[Q]] }
analyse{ x[eat zl1 | eat z2]

| yileat x | z1[] ]

| y2[eat x | z2[1 1 }

Fig. 1. Input to our type inference implementation for analysing a term in the fictioeat tal-
culus”, and the inferred type graph as rendered by the VCG graph latomi [23] (the dashed
lines represent subtyping edges).

does any type system for a mobility calculus with explicitdtons that we are aware
of); we leave it to future work to try to combine the strengtfishese two principles.

1.4 Notation and preliminaries. , whereX is any metavariable symbol, stands
for the set thalX ranges overPsn(A) is the set of finite subsets of the setA i, B

is the set of finite partial maps from to B. Dom f is the set of's such thatf (x) is
defined. In contexts where a sequence of similar objectsidexed with indexes up to
k, it is to be understood th&tcan be any integer 0. Thus, if the first index is 0, the
sequence must have at least one element; sequences inderedtbk may be empty.

2 Metall: A metacalculus of concurrent processes

The metacalculudletall defined in this section is th&yntacticsetting forPoly. Its
role is to let us present the generic propertieBalf/[] without resorting to handwaving.
Though we define a reduction relation and some other fornmdgsties forMetald,
these exist solely as support for making formal statementsitzPolyd. We do not
intendMetall to take the place of any existing calculi or frameworks.

As a first approximationMetal is a “syntax without a semantics” except that it
does give semantics to a few basic constructs, e.g., proggissation and substitution.

2.1 Terms. Figure 2 shows the syntax of process termilitall. The trivial process
0, parallel composition of processBg Q, process replicationP, and name restriction
v(x).P are all well-known from most process calculi, includirgcalculus and MA.
They are given their usual behaviour by the structural cosgee relatiore.

Metad amalgamates all other process constructors into the decmmaept of a
form. Forms have no intrinsic meaning until a set of reductioesudive them one.
Examples of forms include the communication actiorsy®>” and “x(y)” from the
T-calculus, the movement capabilitieis X, “ out X", and “open X" from Mobile Am-
bients, and even ambient boundaries themselves, which iteeagrx [1”. We support
the traditional syntaxx{P]” for ambients by interpretingE; ... Ex[P]E; ... E,," as syn-
tactic sugar for E; ... Ex[1E] ... E;.P". Except for this syntactic convention, the sym-
bol [] has no special interpretation Metald and it is a (single) name just like and



Names: xy:=al|b. .z|aa|ab...eas|eat|eau...\[]|‘\:\*|/...\o
Sub-forms:  f: _xoxl

Messages: M,N::=f | 0 | M N

Elements: E i=x| (X1, X1, .., %) | <M1, Mo, ..., My>

Forms: F: :EoEl...Ek

Processe®,Q,R:=F.P|!IP|v(X).P|0| (PIQ)

Free and bound names in terms are defined thus (the omitted casesdueihygspuctural):

FN(x) = {X} BN(x) =

FN((Xg,. .., %) = N((Xq,.... %)) = {Xl,.. X

FN(F.P) = FN(F) U (FN(P) \ BN(F)) BN(F.P) — BN(F) UBN(P)

FN(v(X).P) = FN(P)\ {x} BN(V(X).P) = BN(P)
P=P P=Q=— Q=P P=QAQ=R=P=R PIQ=QIP
PIQIR=(PIQIR Plo=P 'P=P|!P 10=0
P=Q=FP=FQ P=Q='!P=1Q P=Q = v(0).P=v(x.Q
P=Q=PIR=QIR x¢ FN(F) Ax & BN(F) => F.v(X).P = v(x).F.P
XZFN(P) =P |v(x).Q=vx).(P1 Q)
y € FN(P) = v0O0.P=v(y).[x:=Yy|P V(X).v(Y).P = v(y).v(x).P

Fig. 2. Syntax ofVletall plus its structural congruence relation

out. The proces§.0 can be abbreviated &s

A form consists of a nonempty sequenceetédments each of which is either a
name, abinding element, or anessageelement. Names are used to name channels,
ambients, and so on, but also work as keywords that disshgiarms with different
roles in the calculus. A keyword is simply a free name that &aied explicitly by
some reduction rule. Most non-alphanumesicii characters that do not have any
special meaning, :, *, /, etc.) are also names and so can be used as keywords. With
these we can encode e.g., annotated communication atkiefigM)*” or “ (x)¥” from
Boxed Ambients [5] using pseudgX notation as the forms<M> ~ " and “(x) ~y".

Binding elementqxy,...,Xc) are used to create forms that bind names in the pro-
cess they are applied to. The canonical use of this is fortnmtsg receive actions,
but again the meaning of the form is specified only by the rédncules. Message
elements- - -> allow a form to contain other forms, which — given appropriegduc-
tion rules for communication — can later be substituted prtocesses. For technical
reasons we have to restrict the forms contained in messageeets in that they cannot
contain message or binding elements themselves. We redectorestricted forms and
their elements asub-forms and sub-elements In future work we hope to be able to
handle calculi such as the spi-calculus [1] which commusistructured messages.

It is not uncommon for calculi to prefer using an explicit wesion construction
“P::=rec X.P" to express infinite behaviour rather than the processaaftin oper-
ator “!”. There are certain technical problems with supporting ttirectly inMetall
(which may however be approachable by novel techniquedvimgoregular grammars
developed by Nielson et al. [19]). In the common case whezdalget calculus does
not allow location boundaries to come betweenrteX binder and the boun, it can



8(x) whenxe Dom§

8Ex=<{y when§(x) =y for somey X otherwise

X whenx¢ Dom§
SMx = {
e otherwise

P
SP(V(0.P) = v(x).8PP SP(x.P) = S(X);(S P)  whenx € Doms
X.(8"P) otherwise
(M.N).P = M, (N,P) 0.P=P f,P=fP

Fig. 3. The actions of term substitutioB is the action on message€ the action on elements,
8F on (sub)forms, an@” on processes. The omitted cases (including the on&yrsimply
substitute componentwise into the syntactic element in question. Jihédper operator serves
to linearise messages once we do not need to keep track of whetheraheygosite or not. (In
other systems, this is often done by the structural congruence relatioadste

easily be simulated iMetadl by adding the reduction rulgawn a | rec a.P — P and
then representingec X. - - - .X asv(x).(spawn x | !recx.--- .spawn x).

2.2 Well-scoped terms. The process terrR is well scopediff it contains no nested
binding of the same name and none of its free names also appead in the term.
Formally, it is required that (1) BiP) and FNP) are disjoint, (2) wheneve? contains
F.Q, BN(F) and BN Q) are disjoint, and (3) whenevercontainsv(x).Q, x ¢ BN(Q).
We generally require that terms are always well scoped. €deation rules in an
instantiation oMetald must preserve well-scopedness. This simplifies the typlysiaa
because then we do not have to suppedonversion of ordinary binding elements.
We must still handle-conversion of private names, which is built into theaela-
tion, but we will assume that it is not used to create termsatenot well scoped.

2.3 Substitutions. Substitutions inMetal] substitutemessagefor names The fact
that entireprocessesannot be substituted is an important technical premigeoyfJ;
it means that substitution can preserve well-scopedneisstdmarkable that mobility
calculi in general refrain from substituting processes;uasuch as Seal [25] ankl 3
[12] which allow exchange of entire processes do it by lecavementather tharsub-
stitution This probably reflects the intuition that a running prodss$mrder to distribute
across a recipient process than a mere name or code sequence.

A (term) substitution 8 is a finite map from names to messages. Figure 3 de-
fines the action o on the various syntactic classes Mdetal]. In Mobile Ambi-
ents and its descendant calculi, the value exchanged in enoaination operation can
be either a name or a (sequence of) capabilities. The forsntrei case in reduction
(b) | (a).outa.0 — outb.0 and the latter inlinb) | (a).x[a.inc.0] < x[inb.inc.0]. To
support this, Fig. 3 contains special cases for the syctaateM ::= F andP ::=F.P
when the formF is a lone name. In that case the substitution for the nameséestied
directly into the message (or process structure).

In cases likg{a — b}Px[out a.0] where the substituted name occurs properly inside
a form, the substitution is carried out componentwise fahefarm element, and the
name is replaced in the rule f8F x. In this context the replacement must be a name



too. This will be false if the term tries to reduce @sb) | (a).outa.0 — out(inb).0.
The published formalisms of most ambient-inspired calastially regard 8ut (inb)”
assyntacticallypossible busemanticallymeaningless. That this configuration cannot
occur is often the most basic soundness property of typermsstor such calculi.

In Metald such a semantic error becomes a syntactic one: It is simplpossible
to use an entire form as an element (except indirectly thtramessage element). If,
at runtime, a substitution nevertheless tries to do so, Wetiute the special name”,
which is to be interpreted as, “an erroneous substitutiggpeaed here”. Thus, with
the MA communication ruleMetal] reduces<in b>.0 | (a).out a.0 < oute.0. This
convention is technically convenient because it allowsoubdund the nesting depth
of forms (using the sub-form restriction). Because mostliphbd calculi attach no
semantics to forms likesut (inb)”, we do not lose any real expressiveness.

Forms that contaim are inert inMetalJ unless there are reduction rules that explic-
itly match one. The calculus designer can also define reduction rules thate's in
other situations to mark reduction results as “erronedosi’.example, in the polyadic
T-calculus, it is usually considered a run-time error if sometries to send am-tuple
on a channel where another process is listening fon-&uple, with n £ m. By writ-
ing explicit ruleg for such situations, they can be handled in parallel withfoneded
substitutions. (One cannot straightforwardly write patseto test for malformed sub-
stitutions, which is one reason for building the generatib# into Metall).

In either case, th@oly[ type system will conservatively estimatehether(and
where) ae can occur. Which conclusions to draw from this (e.qg., repecthe input
program due to “type error”) is up to the designer of the dalksu

The definitions in Figure 3 do not worry about name capturgeimeral, therefore,
§X X is only intuitively correct if BN X) is disjoint from the names mentionedSnin
practise, this will always follow from the assumption thiiterms are well scoped.

2.4 Reduction rules. Figure 4 defines most of the syntax and semantics of reduction
rules forMetall. Our full theory (and implementation) allows a slightly ra@xpressive
template language to the right of the arrowr@duce rules, but the subset we present
here is sufficient to express the calculi listed in Sect. 2.5.
As an example, with this syntax we can describe Mobile Amisiby the ruleset
Rwa = { active{P in a[P]},

reduce{a(inb.P | Q] | b[S] — bla[P | Q] | S},

reduce{afblouta.P | Q] | 8] — a[S] | b[P | Q]},

reduce{opena.P | a[R] — P | R},

reduce{<M>.P | (a).Q =P | {a:=M}Q} }

These five rules are all that is necessary to instanikize (] to be Mobile Ambients.
The fourreducerules directly correspond to the reduction axioms of thgetcalcu-
lus. The ruleactive{P in a[P]} is theMeta notation for the “evaluation context” rule

4 E.g.,reduce{<M1,M2> P | (x1,x2,%x3).Q — .0} for (m,n) = (2,3). Our implementation pro-
vides an extension for writing a single rule that catches all gairs) at once.

5 The rules are not sufficient to get communication reduction with arbitrety. Our imple-
mentation provides a syntax for defining arbitrary-arity communicatiéesriput for reasons
of space and clarity we omit it in our formal development.



Name variables: x&=a|b]|c|
Message variablesn :M [N -
Process variables:p:=P | Q| R |
Substitutes: si=X|m
Element template€ ;1= X | x| (Xg,...,%) | <fy,..., >
Forms templates: F ::=EgE1...Ex
Process templates? ::= B | E.P | 0| (P1 | P2)
| {Xo:=s0,.... % =5} P (R)
Rules: RL ::= reduce{P; — P,} | active{pin P}

Rulesets: R € CPfin()

The syntactic choice markd®) is allowed only in aeducerule to theright of the arrow.

Let anterm instantiation V map to[x]\ {e}, [ to[M], and to[P]. It applies to

templates strictly componentwise, except for the case that fills in and ap@igsstitution:

VP({oo % =80 B) = (o V) = V(S), .. P (V(B)

As a special exceptioW}P P is consideredindefinedf V(%) = V(%) for X1 # %> such that
X1 occurs inP below a form template containing a binding elemeént ,%,...).

For example{a — x,b — x,c — x} cannot be applied t6a).c.0 | (b).c.0, which would
otherwise capture names and prodg.x.0 | (x).x.0.

reduce{P; — P} € R REP—Q

RFVPPy — VPP, RE V)P v().Q
active{pin P} e R RFP—Q RFP—Q P=Q RFQ—R
REO[Pp—P)PP— (V[p— Q)PP RFPIR—QIR RFP—R

Fig. 4. Syntax and semantics of reduction rules.

P — P’ = a|P] — a|P']. This is, in fact, the only concrettive rule that we have so
far needed for encoding existing calculi. We might just hiaaed-coded something like
this rule intoMetal], but we find it cleaner not to have any built-in distinctiorivieeen
“action” forms and “process container” forms in the theory.

The lower half of Figure 4 defines how to derive a reductioatieh between pro-
cess terms from a ruleset. For example Rgt; be the ruleset for the fictional calculus
from Fig. 1:Rea= { active{P in a[P]},reduce{aleatb | P] | b[Q] — a[P | b[Q]]} }. We
can then instantiate the first inference rule in the bottaind ihf Fig. 4 to obtain

Reatt yl[eat x | z1[0]] | x[eat z1 | eat z2] — y1[x[eat z1 | eat z2] | z1[0]]

by choosingV to be{a +— y1,b— x, P z1[0],Q > (eat z1 | eat z2)}.

A reduction rule must not allow a well-scoped term to reduce hon-well-scoped
one. In order to guarantee this, the process templatesrimrtnest satisfy some scoping
restrictions that are not apparent from the syntax. Theictishs will be satisfied by
most rules that are intuitively sensible; because a pragiskerstanding of how the
restrictions work is not important for a high-level undargding ofMetall, we refer to
this paper’s long version [17] for a precise definition.



2.5 Example instantiations. We have checked (using machine-readable rulesets for
our type inference implementation fioteta[)/Poly() thatMetad can handlewcalculus
[18]; Mobile Ambients [8]; Safe Ambients [16] and variousrigats regarding where
the out capability must be found and which name co-capabilitiestmefer to (vari-
ants with anonymous co-capabilities also exist [15]); teal®alculus [25] in the non-
duplicating variation of [10]; Boxed Ambients [5], as wel &s “asynchronous” and
“Seal-like” variants (the latter being what later papersstraften refer to as BA); Chan-
nelled Ambients [21]; NBA [6]; Push and Pull Ambient Calcsilf22]; andM 3 [12].

In many of these caseb]etal] supports the straightforward way to notate process
terms as flascli text, but in some cases the native punctuation of the tagjetic
lus must be changed superficially to conforniMetall conventions about how a form
looks. For example, the original send actiptfrom [18] is represented ay<x>" (but
“/y X' would also have worked), ancefiter(x,y)” from [6] becomes &o-enter (X)y”,
because it bindg in its continuation but usegto handshake with the entering ambi-
ent. The h[cy, ..., Ck; P]” construction in Channelled Ambients [21] can be represent
as N[cs.(c1.0 | --+ | &.0) | ps.P]". In our ruleset for Mobile Ambients with Objective
Moves [7], the fact that reduction rules cannot inspect thecture of messages forces
us to represent the originajb M.m[P]” as “go.M.m[P]".

3 Polyll: Types for Metal

3.1 Shape predicates.As described in the introductioshape predicateare the
central concept iRoly. A shape predicate denotes a set of process terms; cerégia sh
predicates that are provably closed under reductiotyges The full language of shape
predicates is somewhat complex, so let us introduce it pisee The basic idea of
shape predicates can be explained simplghape predicate looks like a process term.
It matches any process term that can arise by repeatedlyiahijplg and/or removing
sub-terms of the shape predicalttere, “duplicating” and “removing” sub-terms means
applying the rewriting rulest~ 11| TtandT~~ 0 to any syntactic subterm of the shape
predicate, in addition to using the structural congruemtation for terms.

For example, a shape predicate writtginb | inc] | c[0] would match the terms
afinb | inc] | ¢[0] (which is identical to the shape predicate) aijichb] | afinc] | c[0]
(which arises by duplicating|- - -] and then removing one of the subterms in each of
the copies). But[inb] | c[a[0]] does not match, because duplicating subterms cannot
makeal[] appear below @[]. Neither isinb | inc | c[0] allowed — when removing
thea[] form, the entire subterm below it must be removed.

The type in Fig. 1 can be written in term shapeyaeat x | z1[0] | x[z1[0] | eat z1 |
eat z2]] | x[eat z1 | eat z2] | y2|x[eat z1 | eat 22 | z2[0]] | eat x | z2[0]].

In practice shape predicates cannot be exactly term-shhped pays to keep this
naive idea in mind as an intuition about what shape predicate. When we introduce
complications in the rest of this subsection, they shodlde@linderstood as “whatever
is necessary to make the naive idea work in practice”.

Replication (P) is ignored when matching shape predicates. This is senbil
cause! P behaves like an infinite number Bfs running in parallel, and anfynite num-
ber of P's in parallel match a shape predicate exactly if a sifytioes.



Message types: W= {fy,..., fill* | {x}
Elementtypes: e:=X| (X1,...,%) | <H1,-.., k>
Form types: 0=¢€p€1...&

Node names:X,Y,Z::=X|Y|Z]| ---

Type substitutionsT € ﬁ—”>

Edges: n:=X LY|XY
Shape graphs: G € Pn((n])

Shape predicatest::= (G| X)

M &[x] M,0 = f1.fo... .0 {fl,...,fk}g{fi7...7fé}

EM:{f],.., T3 Fx:{x}
FMi:ipr -+ F Mgk
FX:X F (X, Xk 5 (X ey Xk F<Mq,...,M> <P, ..., >
FEopigo - FExie X&Y)eG FF:¢  FP:(G]Y)
FEp...Ex:€p...8 FF.PZ<G|X>
FP:m FP:m FQ:m
FIP:TT FPIQ:m Fo:mt

Fig. 5. The syntax and semantics of shape predicates. Edges of the famr-X do notinfluence
the semantics of the shape predicate; Sect. 3.2 explains what they.are for

We want to represent all possible computational future chdarm smashed to-
gether in a single shape predicate. This creates problemtbdmaive idea, because
terms such asx[eat x| can evolve to arbitrary deep nestingsx§f--]. Therefore we
need shape predicates toibénitely deep trees. We restrict ourselves to infinite shape
predicates with finiteepresentations— in other words, regular trees.

There are several known ways of representing regular tekbsear syntax, but we
have found it easier to work directly witfraphs A shape predicate now has the form
(G| X), whereG is a directed (possibly cyclic) graph where each edge idlbeith a
form, andX is a designated root node in the graph. A term matches the giragicate
if its syntax tree can be “bent into shape” to match a subgsaph that each form in the
term lies atop a corresponding edge in the graph (edges magdaemore than once),
and groups of parallel compositioh, ando lie within a single node in the graph.

The formal structure dPolyd uses graphs where node names are just opaque identi-
fiers and the meaning is given by edge labels. Witisplayingthe graphs (as in Fig. 1)
we have found it useful to put each edge label inside the edgrajet node. Of course
this can’t be done in the rare cases when two edges that skengeadisagree.

Graphs alone are not enough to guarantee a finite type foy &smn. For example,
the term<x> | ! (y).<y.y> can (given the reduction rules of MA) evolve into terms
with messages that contain arbitrarily long chaing’sfwithin a single form. We need
to abstract over messages such that an infinity of forms tiudt &like except having
messages of different length within them can be describethéysame shape graph
label. This is the job omessage typeg, which are defined in Figure 5.



The message typéfy, ..., fy}* describes any message built from the any of forms
fi — exceptmessages that are single names; such a message is matchednbgst
sage type(x} instead. Wherx} is theonly message type that matchesve can see
unambiguously from a message type whethexill result from trying to substitute a
message it matches into an element position. Weelesaent typese andform types
¢ to build form-like structures out of message types and nessage elements.

The syntax and semantics of shape predicates is defineduneFsg To save space
and present the basic theory more clearly we do not hamatiee restrictionhow to
treat it is described in [17]. We have also omitted a thirdrfaf message types, se-
quenced message types, which allow more precise typesaddfimed in [17, sec. 5.2].

Define themeaning of message/element/form types and of shape predicates by

W={M[EM:u} [e]={E|F-E:e} [o]={F[FF:0} [m]={P[FP:m}

Proposition 3.1. The meanings of shape predicates respect the structurgroence:
IfP=Qthen-P:m <= F Q:forall Tt O

Let W .2 be the least message type whose meaning incliiés for all M €
[a],N € 2] With the language of message types presented here (asttgquenced
message types from [17] <L always has the fornify,. .., fy}*, where thef;’'s are
all the sub-forms that appear in eithgror [, in some canonical order (for this purpose
the sub-formx is considered to appear in= {x}). The .| operation is associative.

3.2 Flow edges and subtyping.The only part of the shape predicate syntax of Fig-
ure 5 that has yet not been explained isftber edgesX -7+ Y. They are not used at
all in the above definition of theneaningof the shape graph, but they will be impor-
tant for distinguishing between types and non-types. lafpthe flow edgeX —{7—Y
asserts that there may be a reduction where a process @skbyil is moved toY and
in the process incurs a substitution described@by

Alternatively,X —71—Y can be viewed asdemandhat wheneveP € [(G]| X)] and
Q arises by applying a substitution describedIb P, it must hold thaQ € [(G|Y)].
Because flow edges do not contribute to the meaning of shagulkcptes, there is no
guarantee that this demand is actually satisfied for a shagubcate that contains the
flow edge. This is a global property of the shape graph, and iNeshortly define a
class offlow closedshape graphs where the interpretation of flow edges is altmags

An important special case is whéh= &, where the process movesthout any
substitution. TherX <z~ Y can also be viewed as an assertion #f@X) is asub-
typeof (G|Y), or, symbolically, thaf (G| X)] C [(G]Y)]. We therefore also speak of
X —z—Y as asubtyping edge

Write - 8 : 7' iff Dom § = DomJ andt §(x) : T(x) for all x e DomS$.

Define the action of type substitution on subforms and megstnent types by
the rules in Figure 6. This definition ensures tff@ ] contains the result of every
termsubstitutionSM M wheret- § : T and- M : , and likewise for elements.

Definition 3.2. The shape graph G ifow closediff whenever G contains %Y and
X -7+ Z such thaBN(¢) " DomT = &, then there is aW such that G contains{¥—
W and additionally it holds that



T (xo) whenk = 0 andxg € DomT
{TExy...TEx3* otherwise

Tf(xo...xk)—{

T(x) if xe DomT

TMLfy, L R =0T T e T = .
{x} otherwise

|y whenT™ {x} = {y} for somey
~ ]e otherwise

TE<y, ... > =<TMpy, ..., ™M p>

TE (X1, X) = (Xg, 05 %)

TEX

Fig. 6. The action of type substitutions? f is the action on subform&™ p is the action on
message types, afiiF £ is the action on element types.

Let atype instantiation U map to[X]\ {e}, M]to , and to . It applies to element

and form templates completely componentwise (giving element and fqras}yjust like
term instantiations do. The relation betwen type instantiations and procesktiesnare
given by this inference system:

X =U(p) (U(p) 45— X) €G (U(P) o uU)—USs,...> X) € G
Uk p:(G[X) Uk B:(G[X) Uk {.. % =s,...} p: (G[X)
UEPr:mt  UkPo:T XYEY)eG  UKP:(G]Y)

Uk 0: T IR UREP: (G|X)

wherellSx = {U(X)} andUSrh= U(rh). The rules for template processes havé amriant
and arR variant; the variable lettesranges ovelt andR.

As a special exceptioflf ¢ P : Ttis not considered to hold il (X1) = U(Xp) for X1 # %o
such thaj occurs inP below a form template containing a binding elemént ,%,,...).

Fig. 7. Matching of reduction rules to shape graphs.

1. If ¢ =x andT(x) = {y}, then G contains 2> W.
2. Ifg =xandT(x) = {fy,..., fy}*, then W= Z and G contains Z zfor1 <i<k.

3. If none of the above apply afd= €. .. &, then G contains 2ot T8y

We call a shape predicatgs | X) flow closed iff its G component is. O

Intuitively, a flow-closed graph is one where the intuitiveanings of flow edges
are true. That is the content of the following theorem:

Proposition 3.3. Let G be flow closed and contain-X1— Y . Assume that S : T and
thatBN(P)NnDomT = @. Then- P: (G| X) impliest- 8PP : (G|Y) O

The assumption that B{) " Dom T = & will be true in our uses because we are
assuming that all terms are well-scoped.



3.3 Semantic and syntactic closure; typesCall the shape predicatesemantically
closedwith respect taR iff - P:mandR+P<— Qimply - Q: 1t

As described above, we watypesto be semantically closed shape predicates. But
it is not easy to recognise semantic clostise will therefore define a restricted, but
easier to decide, class syntacticallyclosed shape predicates, which will be the types.

Figure 7 defines a way to match process templates directip®draphs without
going via the process semantics from Fig. 4. A type instéiotisapplies to message,
element, and form templates much like tfis in Fig. 4, but the process part is different
because a type instantiation maps process metavariabtexd&s in the shape graph
rather than processes. This is best illustrated with an pl@mssume we wish to find
out whetherGo |R) is closed with respect @ eq, Where

R t[] X pl] y _eta o foo T
‘7/:} 9[J
Go = W y by

S
Reat has only onaeduce rule, and we look for matches of its left-hand side, that is
(Xo,Up) such thatXy can be reached from the root by edges with labels of the shape
x[1 andUp K aleatb | P] | b[Q] : (Go|Xo). The only such pair is

X=X, Up={arp,b—q,P—Y Q—W}

For the graph to be syntactically closed, the sarandlUy must match theight-hand
side of the rule, i.€lo  a[P | b[Q]] : (Go|X). This turns out not to be true; if one tries
to construct at derivation it turns out that the judgeniésit; Q : (Go| V) is needed, and
that can only be true iflo(Q) = Wz}~ V) € Gp which is not the case.

Thus the graph is not syntactically closed fog,; and indeed it is not semantically
closed either, becau®e = t[p[eat q] | q[s[0]]] is in [{Go|R)] butP, = t[p[q[s[0]]]] is not,
even thougtR gai- P1 — Po. If we add the missing edge, givir@y = GoU {W -z V},
we do gefllo i a[P | b[Q]] : (G1|X), butGy is notflow closedand we need to add even
more edges to make it so. In the end we get

R t[] X pl] Y eatq 7 foo T
9(:} 9(/
G2 = Wo—— V2 .y

where, as in Fig. 1, subtyping edges are shown as dashed Tihesshape predicate
(G2 |R) is syntactically and semantically closed.
We are now ready do define syntactic closure formally:

Definition 3.4. Let the shape predicate= (G| X) be given. The set afctivenodes for
R, writtenactivex (1), is the least set A of nodes which contains X and such thaltlfor a
Y € Aand allactive{ pin P} € R, it holds thatlL 5 P: (G|Y) impliesU(p) e A. O

SE.g. letG= {1 S Y0 2= xo &<l x5 2 ,xy b x3 -2, x4 <, x5} Then
(G|X0) happens to be semantically closed with respe¢téalucef{ (a) <M>.P — {a:=M}P}},
but it is not trivial to see this in a systematic way.



Definition 3.5. G is locally closedat X with respect tdR iff wheneverR contains
reduce{P; — P} it holds thatll § Py : (G| X) impliesU K P2 : (G| X). O

Definition 3.6. The shape predicate = (G| X) is syntactically closedvith respect to
R iff G is flow closed and also locally closed at evergXctivex (11). When this holds,
we calltan (R-)type O

Checking that a purported type is really syntactically etbs algorithmically easy;
see [17] for details.

Theorem 3.7 (Subject reduction).If Ttis syntactically closed with respect # then
it is also semantically closed with respectio O

3.4 What to do with types. Once we have a type, what can we use it for? An obvious
possibility is to check whether the term may “go wrong”. Thseu(or, more likely, the
designer of a programming environment that Udeg[1) specifies what “going wrong”
means. It is a clear indication of errordfturns up in an active position, but opinions
may differ about if a is produced at a place in process tree that never becomes.acti

One can also imagine very application-specific properteheck for, for example
“this process can never evolve to a configuration where ariearthhamedh is inside
one named”. This is easy to check for in the shape graph. Alternativehe may want
to write this as a rule, to haveolyd do the checkingreduce{bla[P] | Q] < .0}. The
ability to write such rules is one of the reasons witgtall does not distinguish strictly
between “names” and “keywords”.

Polyd makes it fairly easy to checkafety propertiesike “no unauthorised ambi-
ents (e.g.p) inside secure ambients (e.$),’, but there are also questions of safety
that Poly[] cannot help determine. This includes properties that dijpentheorder
in which things happen, such as the “correspondence ass&rtbften used to specify
properties of communication protocols. There are typeesystfor process calculi that
can reason about such temporal properties (for examplgf¢t 3he m-calculus), but
we are aware of none that also handle locations and ambigatrsobility.

4 Type inference forPoly[]

Assume now that we are given a process tBrand a ruleseR; we want to produce an
R-type forP. Itis trivial to construcsometype forP — one with a single node and a lot
of edges in the shape graph. However, such a type may needtairces and thus not
prove thatP “cannot go wrong”. In this section we discuss how to autooadiiy infer
more informative types.

We do not know how to do type inference that is complete forftitiePolyO type
system; it allows too many types. Therefore we begin by dajira set ofrestricted
types, for which weeanhave complete type inference.

Definition 4.1. Write ¢1 ~ &2 iff [¢1] N [$2] # 2. O

The~ relation is close to being equality. The only way for two ridentical¢’s to
be related by is if they contain message types of the shépe}*. Itis relatively safe
to imagine thex is just a fancy way to write=, at least to a first approximation.



Definition 4.2. G satisfies thavidth restriction iff whenever it contains X Y and
X 25y with ¢ ~ ¢, it holds that Y="Y". O

Definition 4.3. G satisfies thelepth restrictioniff whenever it contains a chairb)(¢—1>
X1 92, ... 8 % with ¢1 & d, it holds that X = X, O

Our type inference algorithm only produces types that fyatisth restrictions. The
width restriction means that when type inference needsdaacdbutgoing edge from a
node in the graph, it never has to choose between reusingstiimgyedge starting there
and creating a new edge with a fresh target node, becausattbeis forbidden by
the restriction when there is any reusable edge. The degtiticteon bounds the length
of a simple path in a shape graph that can be constructed vgihea set of names
and a given maximal form arity, and so also bounds the totalbmr of nodes in the
graph. Therefore the closing operation described belowaakeep adding edges and
nodes to the graph indefinitely and will eventually stop.€3étwo restrictions replace
the notions of “discrete” and “modest” types in [2], whichnsetimes admitted slightly
more precise types, but were very complex and hard to uradetst

In [17] we describe a feature of our implementation whiclowad it to loosen the
two restrictions by tracking the origin of ea¢hin the type graph.

The type inference proceeds in two phases. First we consdrmginimal shape
predicate which the term matches. Thencl@sethe shape predicate — that is, rewrite
its shape graph as necessary to make it syntactically closed

The initial phase is simple. Because shape predicates flk@kerms”, we can just
convert the abstract syntax tree of the term to a tree-shsipage graph. This graph
may or may not satisfy the width and depth restrictions. ¢fdes not, unify the nodes
that must be equdlThat may cause further violations of the two restrictiormtnue
unifying nodes as necessary until the restrictions arefgzdi

The closing of the shape graph is where the real work of tyfeFénce happens. It
happens in a series of steps. In each step, check whethdrape graph is syntactically
closed. If it is, the algorithm ends. Otherwise, the lacklokare can only be because
edges already in the graph imply that some other edggbtto exist (by Definitions
3.2 or 3.5) but do not. In that case, add the new nodes and eglgégised by the failing
rule, and do another round of unifications to enforce thewaafid depth restrictions.

The width and depth restriction together guarantee thatltseire phase terminates.
We do not have any good worst-case complexity bounds forltseie phase; instead
our implementation allows further restrictions on typebéaapplied in order to quench
blow-ups one might observe with particular calculi and egharterms. The tightest
restrictions will enforce polynomial complexity, at thestmf losing the possibility
of spatial polymorphism. Thus restrictebly(] has a strength roughly comparable to
current non-polymorphic type systems for ambient-derizaduli.

Theorem 4.4 (Principal typings). A result of type inference is a principal typing
[26] for the input term P: For everyt such that- P: 17 it holds that['] D [r]. O

" This is the only way to reach a graph that satisfies the restrictions. If the aittrdepth
restrictions had useg instead ofx, there might also have been the option of rewritiny ta
something larger but different, but there would not be a unique “bagt of doing that.



4.1 Implementation. We have implemented our type inference algorithm. Our im-
plementation is available at the URhttp: //www.macs.hw.ac.uk/DART/software/
PolyStar/), as both a source download and an interactive web interface.

Beyond the features in this paper, our implementation alfime-tuning of the anal-
ysis precision, which influences inference speed as wetifagred type size.

5 Conclusion

Poly[ extends basic properties of our previous syskaigA to a more general setting:

1. Poly hassubject reductionAlso, given a process terfand a shape predicate
one can decide by checking purely local conditions whethisratype and it is
similarly decidable whethdP matchest Thus, it is decidable whether a process
belongs to a specific type.

2. PolyO supports a notion a$patial polymorphisnthat achieves what Cardelli and
Wegner [9] called “the purest form of polymorphism: the sashgct or function
can be used uniformly in different type context without ofp@s, coercions or any
kind of run-time tests or special encodings of represeonati

3. The types ofPoly[] are sufficiently precise that many interestisafety/security
propertiescan be checked, especially those that can be formulatedessigps on
the possible configurations that can arise at run-time.

In addition, this paper makes these completely novel douions:

4. Metal is a syntactic framework that can be instantiated into eeléagnily of mo-
bile process calculi by supplying reduction rules.

5. Thegeneric type systerfoly(] works for any instantiation oMetald. We have
checked that it works forecalculus, a large number of ambient calculi, and a ver-
sion of the Seal calculus. In [2] we claim&blyA would be easy to extend to
ambient-like calculi by hand, but extending the proofsRotyA manually would
be tedious. WithMetald we have developed the theory to do such extensions fully
automatically.

6. For the subsystem dfolyd satisfying thewidth and depthrestrictions, there is
a type inference algorithm (which we have implemented) #hatys successfully
infers aprincipal typefor any process term. This means tRaty[] has the potential
for compositional analysis

7. The width and depth restriction are more natural andtim&than the “discrete-
ness” and “modesty” properties with respect to which we sftbexistence of prin-
cipal types forPolyA.

8. Poly’s handling of communicationand substitutionhas been redesigned to be
more direct and intuitive than iRolyA.

5.1 Related work. Another generic type system for process calculi was cocistdu
by lgarashi and Kobayashi [14]. Like the shape predicat@sliyi], their types look like
process terms and stand for sets of structurally similazggees. Beyond that, however,
their focus is different from ours. Their system is specifithe r-calculus and does
not handle locations or ambient-style mobility. On the othand, it is considerably



more flexible tharPolyd within its domain and can be instantiated to do such things as
deadlock and race detection which are beyond the capabitfifoly].

Yoshida [27] used graph types much like our shape predit¢ate=sason about the
order of messages exchanged on each channel im-tladculus. Since this type system
reasoned abotimerather tharlocation it is not directly comparable tBoly[J, despite
the rather similar type structure.

The spatial analysis of Nielson et al. [19] produces reshts somewhat resemble
our shape graphs, but does not have spatial polymorphism.
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