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Abstract

A mixin modulds a programming abstraction that simultaneously
generalized\-abstractions, records, and mutually recursive defini-

tions. Although various mixin module type systems have been de-

veloped, no one has investigatpdncipal typingsor developed
type inferencdor first-class mixin modules, nor has anyone added
Milner’s let-polymorphismo such a system.

This paper proves that typability is NP-complete for the naive

approach followed by previous mixin module type systems. Be-

cause a\-calculus extended wittecord concatenatiors a simple
restriction of our mixin module calculus, we also prove the folk be-
lief that typability is NP-complete for the naive early type systems
for record concatenation.

To allow feasible type inference, we preseévtrtini, a new
system ofsimple typedor mixin modules withprincipal typings
Martini is conceptually simple, with no subtyping and a clean and
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1. Introduction

The goal of this work is to produce a type system for first-class
mixin moduleghat would have principal typings and thus support
compositional type analysis.

As a programming tool, first-class mixin modules are aimed not
only at programming-in-the-large issues such as generic modules
and dynamic linking, but also at programming-in-the-small issues,
because they combine the featuresAe@ibstractions (first-class
functions), records, environments with mutually recursive defini-
tions, and namespaces [31]. A mixin module consists of named
components; some aexportsthat the module defines for other
modules, some arienportsto be supplied by other modules, and
some ardocals i.e., private to the module. Once all imports are
satisfied bylinking modules, the exports can batracted

Linking is symmetricwhenA andB are linked togetheA’s ex-
ports can satisf{8's imports andvice versaFor example, consider

balanced separation between unification-based type inference withthe following two modules, wherd(g, i) stands for some expres-

type and row variables and constraint solving for safety of linking

and field extraction. We have implemented a type inference algo-

rithm and we prove its complexity to b@(n?), or O(n) given a
fixed bound on the number of field labélgo prove the complex-
ity, we need to present an algorithm fiamw unificationthat may

have been implemented by others, but which we could not find

written down anywhere. BecauBartini has principal typings, we
successfully extend it with Milner’s let-polymorphism.

Categories and Subject Descriptors D.3.3 [Programming Lan-

sion containing the identifieggandi and so forth folO, P, Q:

A= {export £ = N(g,1); import g,h; locali = O(h)}
B = {import £; exportg = P(f,1); locali = Q}

Linking A andB produces this combined module:

A B={exportf =N(g,j), g=P(£f,k); import h;
local j = O(h), k = Q}

Because the local definitions df in A and B are independent,

guage¥ Language Constructs and Features—Data types and struc-they (or at least one) must be renamed\is B to avoid conflicts.
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Also note thatt andg in the linked module are mutually recursive,
though no recursion is apparentAror B alone.

This behavior is like compilation unit linking in C (and indeed,
most languages) and is quite different from the asymmetric link-
ing of the ML family’s structuresandfunctors However, unlike C
“modules”, the mixin modules we investigate dnest-class i.e.,
they can be stored in data structures, passed as arguments, returned
as results, nested using variables that are in scope, etc., and which
modules are linked may depend on arbitrary run-time computa-
tions. In fact, modern programs in C and other languages do dy-
namically link modules at run-time (sometimes entire libraries that
are also loaded at run-time). However, this is generally outside the
language definitions and the type systems do not prevent linking
failures due to missing or multiple definitions for a name. We focus
instead on a&trongly typedsituation with better static guarantees.

Type analysis izompositionaWwhen each program fragment’s
analysis result does not depend on its lexical context. Composition-
ality simplifies type inference algorithms and helps with issues like
separate compilation and accurate type error reporting. The main
problem in compositional type inference for mixin modules is en-
suring that the type system contaimsncipal typingsfor expres-
sions likeAxy.x@y, which links two unknown modules. In this ex-



ample, the type system must not allow modules givexasdy to
both export the same name. But to be compositional, we must ana-
lyze Axy.x&y without any knowledge about its eventual arguments.

The problem for mixin modules is similar to compositional
analysis of calculi withrecord concatenatiorRecords are the spe-
cial case of mixin modules with no imports and no internal recur-
sion, and record concatenation is just a special case of linking mixin
modules. The fundamental problem in analyzing record concatena-
tion turns out to be similar to that for linking mixin modules, al-
though mixin modules have more complications. Record concate-
nation has been intensively investigated as a potentially useful pro-
gramming feature and also as one possible way to model object-
oriented multiple inheritance. (Note that type inference for record
concatenatioris much harder than single-field recaxtensior)

Our approach to types for mixin modules is inspired in some re-
spects by previous work on type inference for record concatenation.
However, we could not build directly on a type system for record
concatenation, because the most successful such systersghise
typing polymorphismFor technical reasons, we find this undesir-
able for mixin modules; for example, we would need different type
rows for a module’s imports and exports, which is problematic in
our favored family of mixin module calculi where the externally
visible names of imports and exports use the same namespace.

Thus, while our type systerMartini for mixin modules has
some features in common with record concatenation systems, it
also exhibits interesting properties of its own which become ap-
parent when it igestrictedto work with aA-calculus with records.
The restriction, which we caBowtie, does not type as many terms

as some previous systems, but it has some other advantages, amor

which is a fast and conceptually simple type inference algorithm,
which runs in almost linear time. In contrast, among record con-
catenation type inference algorithms with complexity analyses, the
next best runs in cubic time [19].

Along the way to our main goal, we prove that the most obvious
straightforward systems of simple types for mixin modules and
record concatenation have NP-complete typability problems.

Martini (and its restrictiorBowtie) hasprincipal typings[29],
which is a precondition for compositional analysis and is also
needed for adding Milner's let-polymorphism. Principal typings
should not be confused with the weaker notion of princigaks
which is usually all that remairefter let-polymorphyism is added.

Martini is asimpletype system that does not yet inclupely-
morphism which is needed for a serious strongly typed language.
We present the simply typed versibfartini first, because the ma-
chinery of polymorphism would obscure the novel features that
handle mixin module linking. Sect. 7 shows how to extéfattini
to Martini¥ that has Milner’s let-polymorphism, as used in ML and
other languages. This ought to be enough to support programming-
in-the-small. For programming-in-the-large, further work is needed
to add toMartini encapsulation and parameterization capabilities
like those of the ML module language.

Our type inference implementation fbtartini can be found at
(URL:http: //www.macs.hw.ac.uk/DART/software/Martini/) as a
web application and as source code.

2. Notation

These notations are fairly standard: fAnction f is a set of
pairs, where we write each pair in the form #~ b", such that
{(ar b),(arc)} C f impliesb = c. In this section, let andg
range over functions and l&tandB range over sets. Th#gomain
of fisDomf ={x| (x—y) € f}. Therangeof f is Rngf ={y|
(x—y) € f}. Theinverseof fis ™1 = {x—y|(y—x) € f}.
The expressiorf(A) is { f(a) | a€ AnDom f } if A¢ Dom f.
Composition is given by f o g)(x) = f(g(x)). # (A) is the set of

See Section 2 for some essential notation used here, sugh as

[, i, @, #,et cetera

Variables: xi=x|y|z|
Field labels: ¢:=f0|f1|f2|
Label sets: - € #fin([£))

External partsE ¢ W
Internal parts: | € [x] 1 [M]
Values: V i={E;I}
Terms:  M,N:=V |x|M&N|M.L|M\
To be closer to the notation in earlier module calculi, we allg

writing E functions as £1>Xy, ..., ¢n>Xy" instead of {41 —
X1,...,6n — Xn}” and | functions as §1 = Ng,...,yk = N¢”

W

instead of {y1 — Ng,..., Yk — N¢}".

M — M’ N — N
M@N<—>M’®NRC1 M@N<—>M@N’RC2
M — N M — N .
M= N Rt MY e Ny 2 e

FV(Rngly)#xo  x1#x2  FV(Rngly) #x
wherex; = RngE; U (Doml; \RngE) fori=1,2 RLink
I

{EBEs; 1} @ {EBEy; 2} — {EEBEBE,; 18I}

9 RngE C Doml
s ={x— {fex;1}.f | xe Doml }
RExtract
{E; 13— [s]((E(0)))
DomE; #¢ DomE, C ¢
-
RNngE, C Dom| RHide

{E1BE2; 1P\ £ — {Es; 1}

Figurel. Syntax and semantics of tirecalculus

all subsets ofA. The set differencd\Bis {ac A|a¢B}. The
disjoint unionAwB is AUB if ANB = @, and undefined otherwise.
These notations are less common: For any metavariable symbol
X, is the set thaX ranges overesin (A) is the set of alffinite
subsets ofA. The statemenA # B abbreviatesANB = @. The
expressiom 0, B is the set of all finite functiong C Ax B, and
AiL'n'l» Bis the set of alinjectivefunctions inAfin, B The expression
f g meansf Ug if Dom f # Domg, and is undefined otherwise.
If is a set of syntactic entities that can contain (concrete)
variables in the s€k] C , then any (partial or total) functiof
from to can be used assbstitution The application of to
an entierX is defined in the usual way by recursive descent through
X, replacing each variable by f(x) wheneverx € Dom f and
renaming bound variables X as needed to avoid name capture.
We identify syntactic entities modulo renaming of bound variables.
We sometimes encloskin square brackets (likgf]) in order
to emphasize that it is being used as a substitution. This happens in
particular whenrf is given by listing its elements, in which case we
omit the set braces and write jUsi — Xy, ...,Xn — Xn].

3. Them-calculus of mixin modules

Our goal is to create a type system with compositional type in-
ference for the simple mixin module calculus defined in Figure 1,
called them-calculus. Its syntax is essentially isomorphic to that of



the m-calculus of Wells and Vestergaard [31]. The key difference {f>x;x =42} ¢ {g>y;y = x]} where thex on the left must be

is a simplified call-by-name semantics, because the more sophisti-a-renamed to avoid wrongly capturing the (freedn the right.

cated semantics (and equational theory) of the m-calculus are irrel-  Thefield extraction rule RExtract extracts the export with the
evant for the typing issues this paper investigates. Hirschowitz et given label while unfolding into the field body the implicit letrec
al. [13] give a similar calculus with a call-by-value semantics. The of the moduleM to achieve call-by-name semantics. Thiding
m-calculus is in a family of mixin module calculi where imports operatoM \\ = removes exported fields if they exist in the operand.
and exports share a single namespace; an alternative family withA hidden export turns into a local because the internallpiarkept

separate import and export namespaces starts from CMS [4]. unchanged. If none of the fields inare exported or imported the
The basic construct is mixin module, written {E; |}, where hiding is simply a no-op.
E (the external part) maps field labels to variables &n(he Itis a run-time error to try to link two modules that both export
internal part) maps variables to terms. The module expressionthe same label, as well as to try to extract a field from a module
{1>X1,. .., n>Xn; Y1 =Ng,..., Yk = Ng} binds all of the vari- that does not export it or has imports, or to try to hide an import.
ablesx; to x, andy; to yx within the N;’s. Thus the free variables  Our task is designing a type system that prevents these errors while
of {E; I} are FM{E;1}) = (Unerng FV(N)) \ (RngEUDomI1) also allowing compositional type inference.
and all other cases of K1) just collect free variables componen- . -
twise. Each bound namefalls in one of three classes: 3.1 Syntactic sugar for mixin modules and records
e ({>x) € E is animport with external name ¢ and internal The representation of a mixin module as sepakagnd| parts is
namex iff there is no(x = N) € I. When the module is linked ~ formally convenientin that it allows our type and reduction rules to
with a module that has an export with nameeferences t&in be stated relatively Compactly. However, it is not very intuitive for
theN;'s become bound to the exported expression. actual programming, so our implementation also supports a more
e (¢>x) € E together with(x=N) € | is anexport. The exported readable notation (which we have used already in the example in
expressioN can be used from outside via tfield extraction the introduction):
operationM./, but only once all imports have been satisfied via Values: Vo= | {y.. il
linking. ThenN will be evaluated in the context of the other )
definitions inl. The exported terr can satisfy imports of the Module groupszy ::=import £1>Xq,. .., f> Xk

name/ by other modules via linking. The internal namean be | exportli>Xg =Mz,.... 0>X = Mg
mentioned in all of thé\i’s, and the defined value can thereby | localxy =Mg,...,x =M
be directly or indirectly recursive.

! - ! e The construcfyi;...;] is sugar for
(x=N) €l is alocaliff there is no(¢>x) € E. Local definitions

can be used in all of the’s. They can be directly or indirectly {lr)F 8- BwE; ' 8- Bnd'],
recursive, but are not observable outside their containing mod- where
ule except by being referred to by an export. [import £1>Xq,...,>%]E = {6 — % |1<i<k}
Field labels (i.e., external names) are fixed, but bound variables [Xport f15x1 = M,.... 6>Xe = MJE = {4 —x | 1<i <k}
(i.e., internal names) are subjectteconversion (which must keep localxy =Mz,.... =M JE =2
them distinct from other bound variables of the same module) and import £15x1, ..., b>X] =@
the actual names of the bound variables are not visible outside the [axport ¢ %, = My, ..., > X = My]' = {x — M;j | 1<i <k}
module expression. We identify-equivalent terms. localxy =My, ..., =My = {x — M; | 1<i<k}
The fundamental mixin operation lisking , written My & M. o ) -
Its reduction ruleRLink is intuitively simple; linking two mod- and where it is required that Rrigi|E # Dom [y;]' for i # j.

ules puts their internal parts side by side (choosing appropmiate  (Note that syntactic correctness of the result follows from implicit
variants to avoid wrong name captures), and joins their external constraints imposed by the definition &f and the fact that each
parts. The rule divides each of the two incoming external parts into mixin external park is a bijection.) For additional compactness,
acommorpartE and aseparatgpartE;. The separate parts are un- “£>X’ in import andexport groups can be written as just™if x
touched by the linking. The linking happens in the commonBart ~ and/ are textually identical (even though they belong to different
containing the labels mentioned bgthoperands; such labels can- namespaces).

not be inE; and E,, because thek; B E, would be undefined We further define a fourth form of module group (distinguished
on the right-hand side (RHS) of the ruRLink. A label occur- by its lack of keyword):
ring in E maps to thesameinternal name in both operands; this O I VA . v

is always possible byi-conversion. No label can be exported by

both operands; otherwi$eH > would be undefined on the RHS of ~ which is syntactic sugar fogxport £1>y; = Mg, ..., &>y = My,
RLink. A label exported by one module and imported by the other where they;’s are chosen fresh. This allows modules that have
is forced by the commoE to have the same internal name (vari- neither imports nor local definitions nor internal references to their
able) in both operands, so importing variable references inljone Own exports to be written with a record-like syntax.

can become bound to definitions from the other after the linking. For example, the record-like expressidf = 5, g = true}

The premises oRLink ensure that wrong name captures do abbreviatesexport £>x = 5, gy = true, which in turn ab-
not occur.xj is the set of internal names in operandhat do breviates{f>x,g>>y; x = 5,y = true}, which finally abbreviates
not participate in the link. The names in will be bound on {{f—x,g—y};{x— 5y true}}.

both sides post-linking, so they must be disjoint from the other

side’s internal names and free variables. For example, the linking 3-2  Encoding of thex-calculus

{frx,g>y;y=x} @ {h>z; x =13 z=x— 6} (where the com- The reader may wonder how interesting fiiecalculus is given
monE is empty) does not proceed with the shomavariants of the that its only data constructor is the mixin module. It is natural
operands because of the premige# x» where both sets contain to assume that one would need an additional language layer for
Without this premise, the result would be a module that (wrongly) manipulating mixin modules programatically. However, this turns
exported 13 as. To avoid this, the rule forces us to fistconvert out to be unneeded, because we can encoda-tteculus using

one or both of thex’s. Another example needing-conversion is only mixin constructions. A functiodx.M can be represented as



Rows: e [finmE

Types: ri=’al’b|c| .. [{X/c}

Environments?” € [x] 10 [7]

Typings: To=(+T1)

DomI'=RngEuUDoml
I(X): (IoEBI'F I'(x)) forallxe Doml
L =EYDoml) (I'cE)=X%

x:{I'+ I(x)) {E;1}: (oH{X /2 ])

M:(CH{X /]

£ =DomX
M.C:(I"'F X(0))

L1#cL
MZ(F"{[EBHZ‘]_/L;[]})l IZ\IZ<F|—{EEE‘22/L2]}>
MeN: (I'F{XBXBXy/1ULs})

M:(CH{X1BX/ ]}
DomX#:.g Dom X, C (LoNz)

M\ o (I'- {21/ (£ \2o)})

Figure2. Riviera: Naive simple types for thm-calculus

{import arg>x; export res>y = M}, and an applicatioiN M as

(N @ {export arg>y = M}}).res, wherearg (argument) andes
(result) are globally fixed labels and in both cases we chgagbe
FV(M). It is easy to see that an applicationRifink followed by a
number ofRExtract will simulate af3-reduction in thex-calculus.
This is not a new result [31, 4], but is essential for understanding
how them-calculus can be used. We will freely use this translation
as syntactic sugar in examples and constructions.

Let A% denote the fragment afi-calculus that can be written
using only the constructions from the following grammar, some of
which use the syntactic sugar fdrcalculus and records:

M ::=Ax.M | M N ‘ {[flel,...,ékZMk]} | M1 & My | M.¢

We will use A¥ when comparingMartini with earlier record con-
catenation type systems.

4. Riviera: Naive simple types for mixin modules

A natural first attempt at defining a (Curry-style) simple type sys-
tem for them-calculus is the naive type system callBéiera
shown in Figure 2. Following [29], we write typing judgements as
“M: (I'F )" rather than using the older convention dft- M : 7".

A Riviera type has the shapg” / - }} wherez C Dom X, and
denotes a module that exports every label imnd imports every
label in (Dom X))\ =, with the types of the exports and imports
given by therow X. (In the context ofRiviera, a row is just a
finite map from labels to types. Later in our type systi®hartini
in Section 5 we will consider partially unknown rows, which will

particular, even though it is only at the level of simple tyggpe
inferenceis provably hard.

Theorem 4.1. Typability? for Riviera is NP-complete. O

We define the construction that proves this in several stages.
Let M > N abbreviate(Ax.N) M, and letM ~ N abbreviate
(Ax.(x M) >> (x N)) (Ay.y), where for both we choose¢ FV(M N).

Lemma 4.2. M> N : (I" I 7) iff there exists a type’ such that
both M: (I' 7'y and N: (I" - 7). O

Lemma4.3. M~N:Tifandonlyif M: T and N: T. O

Call canonicalthe following two fixed typesOff = {@ / @}
andOn={{a— {2 /2}}/{a}}. LetNand(xy,...,xn) abbre-
viateAyr ... Ayn.((y1®X1).a® - @ (Yo ©Xn).2).b.

Lemma 4.4. In an environment that maps eacht& a canonical
type,Nand(x, ..., xn) has a type iff the type of someigOff. O

LetP(xy) = Nand(x,y) > (x@y) ~ (y© x) ~ {a = {&}}.

Lemma 4.5. Rx,y) has a type exactly in environments where one
of x and y has typ®ff and the other has typ@n. O

We will be reducing from Boolean formula satisfiability, so let
a countable set of Boolean variab|€5 be given, and select a fixed
correspondence that assigns a uniguealculus variablerp to
each Boolean variable. An environment naturally corresponds to
a Boolean valuation for thode such that it assignep either type
On or Off. The corresponding valuation makegue if vp has type
On and false ifvp has typeOff.

Now define a translation from formulae to terms by

[Pl =AtAf.P(t,f)>vp~t
[Fa]=At AL [a]ft
[ﬂl \/fB] = At AfAt1.Af1. AL AED.
P(t,f)>[a]t1f1D [3]t2f2>>
Nand(t1,f)>Nand(tz,f) > Nand(t,f1,£2)
[a A3]=[=(7a V-s)]

Lemma 4.6. [2] has a type exactly in environments that corre-
spond to valuations for ’s variables. The types ¢f ] in such an
environment have the sha@n — Off — 7 if a is true under the
corresponding valuation an®ff — On — 7 if 2 is false. (There
may be one or more’s that can appearin avalid type fon |.) O

Proof. By a straightforward induction over the structureaaf O

Proof of Theorem 4.1 Itis clear that typability is in NP; given an
oracle which tells for each variable which fields its type imports
and exports, type inference is like for the simply typedalculus.

For NP-hardness, we reduce from satisfiability of arbitrary
Boolean formulae. A formula is satisfiable exactly if the term
M, = [a]tf > Nand(f) is Riviera-typable. It follows from Lem-
ma 4.6 that any typing fdvl, implies a satisfying truth assignment
for 2. Conversely, any satisfying truth assignment corresponds to

use different metavariables.) Of course, we could equally well have an environmenf” such thafa ] : (I" - On — Off — 7) for some

written { X1 = X»] whereX; and X, partition the field types into
imports and exports, but tHeX' / - } syntax makes the typing rules
more compact (and we do not intend to actually B&gera as we
will prove it has unfeasible type inference).

An expression written with the syntactic sugaecM defined in
Section 3.2 will always have a type that can be writfdarg —
71, res — 12} / {res}}. We will abbreviate such a typa — 7.

4.1 Typability in Riviera is NP-hard

Riviera can be proversound(i.e., programs it accepts do not “go
wrong”), but that about exhausts its nice formal properties. In

7. From there one easily geté, : (I",t:On £ : Off - 7). O

4.2 Asymmetric variants

In a calculus wittesymmetriclinking, M & N succeeds even when
M andN both define some labé) in which case the result will use
the definition fromN. One can constructRiviera-like type system
Rivierap for such a calculus by replacing thetyping rule with:

2Typability means deciding for a given tetvhwhether there exists a typing
T such thaM : T. Note that specifying thé' part of T would not make the
problem easier: one can just abstract dvés free variables and sét = @.



DomXi1=c1Nco
MZ(FF{[EEE\ElEﬁxll/L]_]}) NZ<FF{[2E22/L2}}>
MeN: (I {SBX1 B/ c1ULo})

Another possible variant of linking allows asymmetric linking,
but requires that a field that is defined in both linked modules
must have the samtype even though at run-time one of them is
discarded. This gives rise tdRdviera variant with this linking rule:

M:(C'H{XBX1/c1]}) N:(I'F{X8X>/c2})
MeN: (I'F{XBXBXy/1ULs})

We call this varianfoin-like, and name iRiviera;, because the
type behavior of this rule is identical to the type-level behavior of
thejoin operatomnx in relational algebras [15, 25]. It is not common
for modules or records (an exception is the Church-style calculus
of [32]), but we mention it to highlight the similarities between
type problems in relational calculi and in calculi with concatenation
and linking. Further, the simplest variation of our systitartini
(introduced later in Section 5) which allows overwriting linking
would have a join-like typing rule.

Theorem 4.7. Typability forRivierap andRiviera is NP-complete.
O

The proof for Theorem 4.1 has been constructed to werka-
tim for Rivierap andRiviera;. (This does make it more complex,
however. Simpler constructions f&iviera and Rivierap can be
found in the long version of this paper [14]).

4.3 Other calculi

Riviera is very similar to Typed CMS as defined by Ancona and
Zucca [4], except that Typed CMS is a Church-style system with
mandatory type annotations in terms. There are also minor differ-

ences, such that the fact the CMS has different namespaces for

clear to us whether this proof can be easily adapted to record-
concatenation type systemdthout subtyping. Vansummeren [25]
proved NP-completenes of typability in various fragments of a
naively typed relational algebra. Ohori and Buneman [15] proved
NP-completeness of typability in a lambda calculus with primitive
sets of records and join operator. Their system is defined in terms
of constraints, but appears to be equivalent in expressive power to
aRiviera-like type system.

5. Martini: A better type system for mixin
modules

Figure 3 show our type systeMartini for them-calculus. Itis de-
signed to simultaneously reach two goals in addition to the usual
basic safety. (1) It should have feasible type inference. (2) Itlshou
haveprincipal typingg29], which are needed to express intermedi-
ate results in a compositional inference algorithm udgtini’s

own type language. Also, principal typings allow adding Milner’s
let-polymorphism (as we do in Section 7).

A mixin module type inMartini has the shap¢R / Q=S},
whereQ represents the set ahport labels andS represents the
set ofexportlabels. The rowR gives the type of both inputs and
outputs, likeX in Riviera; however @artini row may define types
for fields that the module neither imports nor exports.

For example, given obvious extensions with integers and bool-
eans, the ternM = {f>x,g>y; x =y > 5} has the typing@ +
{f:bool, giint,r / {g} ={£}} | @) (r is arow variable whose
role will be described shortly). This is also a typing e {f>x;

x = true]}, even thoughN does not imporg — it is allowed for a

Q to overapproximate the true set of imports. This allows construc-
tions such asf---then M else N to be typed without requiring a
dummy import ofg in N.

In Riviera it was essentially an arbitrary choice to use a single

import and export labels, and uses a special “freeze” operator torow for imports as well as exports. In contrast, the same decision

connect imports with exports. However, the proof of Theorem 4.1

does not use imports at all, except in the syntactic sugar for trans-

lating A abstractions. If one uses theéranslation for CMS (defined
in [4]), our proof directly yields NP-completeness of typability in
the Curry-style variant of Typed CMS (i.e., Typed CMS with type
annotations removed), a previously unknown result.

We believe our proof of NP-completeness of typability can also
be adapted to the implicitly typed systems CM3$2], MM [13]
and Mix [11], although we have not checked this formally.

If one restrictsRivierap to (asymmetric)\®, one gets a type

in Martini is essential for our type inference strategy. In order to
facilitate type inference with principal typings, the three p&tQ
andSof a mixin type{R / Q=-S} have a more elaborate internal
structure than the monolithi&' and - of Riviera — in particular,
each part can beariable

Wand [26] introduced row variables for manipulating partial
knowledge about mappings from field labels to types. Using the
same row variable at the end of different row expressions can
express that the two rows agree at some but not all labels, as
happens in the ruld@Hide. Adding more fields to the row part

system equivalent to Wand'’s type system for record concatena-of a module type does not change the type’s meaning if the set

tion [28]. Because the proof of Theorem 4.1 uses onlyXhdrag-
ment of them-calculus, we get as a bonus result a direct proof of
the folk belief that typability in Wand’s system is NP-hard.

4.4 Discussion

NP-completeness may not sound bad when one compares it to the

familiar result that typability for the Hindley/Milner type system
is DEXPTIME-complete. However, it should be kept in mind that
Riviera is asimplytyped system where polymorphism has yet to

expression part stays the same. Therefdeetini needs no syntax

for an “empty row”; a row variable can always be used for this.
Typings now contairtonstraintsets, which assert relations be-

tween label sets that are not known yet. As a concrete example, the

term {import £>x,g>y; h =x @y} has theMartini typing

f:{r /ql=s1}, s3=s1Ws2,
<F{[ glr/a2=s2}, | /{f.g}={n}} q32q1\827>-
h:{r /q3=-s3},r0 g3 2q2\s1

be added. Thus the proper comparison would be the simply typed The recurrence aof in all three field types means thitone of the

A-calculus, where typability is almost linear (i.@(na(n))).

Our result suggests that type inference for mixin modules is
hard independently of the details of the calculus. A feasible type
system for mixin modules (or record concatenation) must introduce
complications that are not aimed solely at strengthening the type

imports contains a field at all, its type must be the same as that
expected for in the result. The constrairt3 =s1 W s2 says that
every field defined in the result must be defined in exactly one of
the arguments. This particular typing is not princigdirtini also
allows the term to have the tyde- - / {£,g,k}=-{h} } even though

system itself (in the sense of enlarging the set of typable programs)it does not impork. A principal typing for the term would have

but serve to make type inference a tractable problem.

A related result was achieved by Palsberg and Zhao [16], who
prove NP-completeness of typability for a typed object calcu-
lus with symmetric record concatenatiand subtyping. It is not

{-+-/ a={h}} as its type part and an extra constrajn? {f,g}.
Martini’s strategy for escaping the NP-hardnes&ifera is to

consider the constraisB =s1s2 “good” for as long as we have

no information about1 or s2, regardless of whether information



Type variables:
Row variables:

at=’al’bl|’c]...
ro=r0|r1|r2] -

Types: Ti=a|{R/Q=S}
Environments?” € [x] 10 [7]

Import set variables: q:=q0|ql|q2] - Constraints: c:=S=5WS |S=S\z
Export set variables: s:=s0|sl|s2]--- | Q2 Q1\S|Q#c
Type rows: - Ru=r[&r,R Const. sets: C & #in([C))

Import set expressionQ ::=q | = Typings: Ti:=({F7|C)

Export set expressionS::=s| - | L
We forbid as ill-formed rows that define any laldehore than once and we consider types (etc.) moduladhiisstructure equation:
(1:711, L2:12, R) = (b2i12, £1:11, R) when/y # ¢
ForX = {l1+ 71,...,0n— T} €[ £] 10 [7], let X e Rabbreviate/y:71, ..., fnimn, R

LetS =S, Q1 2 Q2, andQ C Sabbreviate the constrain® =S W@, Q1 2 Q2\ &, anda D Q\ S, respectively.
We allow omitting the set braces around concrete environments andaiahs#ats in typings.

Lets range ovetype substitutions which are functions that map] to @ to| S}, [F]to[R], and[a] to[7], such that only finitely
many variables do not map to themselves. Type substitutions are extermgonentwise to map each of the cla@@, , [l

('], [el,[C], and[T] to itself.

A constraintc is solved written|-c, iff either cis a true statement of set theory£ .1 Wyistrueiffc =c1Ucpandcq #22)
or c contains. to theright of the relation sign (that is, to the right ef, €, or D).

LetI-C abbreviate/c € C: I-c, and letCy I Cy abbreviateds : |7 (Cp) = Ik 7 (Cy).
Write 71 = 17 iff 71 andr, are identical except for import and export set expressions.
LetCI- 11 = 7 abbreviater; ~ AV 1 k7 (C) = 7 (11) =7 (12) .

LetCIF I'y = I'; mean that Dondy = Dom I andC Ik Iy (x) = I'>(x) for x e Dom I'y.

DomI'=RngEuUDoml

I (x): (IoBI'FI'(x) | C) forallx e Doml

MaeN: (I'F{R/Q=S} | C)

DomX;=DomX;=_r

CFI(x)=r r=EXDoml) r'=DomE\r: CIF{QD:/, S=c} .

X (TFr]C) Vv {E;1] - (Tor [(ToE)sR/ Q=S | C) TMbdn
M:(I'F{R/Q1=5} |C)  N:(I'H{R/Q:=%} |C)

CHQR2M\%, S=5uS, Q2R \S} Tk MIH{&r,R/2=S)[C)  CR{GCS o

M:(I'+{Z1eR/Q=5] | C)

M.L:(I'+7|C)

Ch{Q#e, S=S1\c} 10

M\ £

H(I'H{X20R/Q=%] | C)

Figure 3. Our type systerMartini for them-calculus

abouts3 shows up later. Thus, e.@x.(x®x).£ is typable inMar-
tini even though there iso value that it can safely be applied to.
This is still sound, a#lartini will reject attempts to actually call it.

context).Martini accepts mistakes in dead or sleeping code that are
hard to check for until a concrete calling context is provided, but it
still rejects mistakes that asmsyto find in dead or sleeping code.

Thus, Martini does not reject some nonsensical (but dynamically Now return to the typing fofimport f>x,g>by; h =x Dy}
safe) programs as type errors, but also escapes NP-hardness adnd consider its triple occurrence of Becauser appears in the
typability. Theorem 4.1 depends on being able to ask the type arguments as well as in the resulartini can begin to resolve

system: “Canany possible call to this function be proved error-
free?”. Martini refuses to answer until we refine the question to
“Will this particular call be error-free?”.

The termAx.(x @ x).£ has a principal typing with the shape
(@ {arg:{f:’a,r / q=s],res:’a, r0 / q0={res}} | s1=
sWs,{f} Cs1,...). Thistyping is “good” because we can solve its
constraint set by substituting the special set expressifor each
of s ands1. This is the role ofL; it allows a constraint to be solved

their connection before enough information to solve the constraint
arrives. This lets some internal errors in sleeping code be caught
early and also gives more readable principal typings by express-
ing more relations between types without constraints. However,

some strength is sacrificed: Each module type must contain the field
types of any module it may be linked with. (The programmer need

not write them as they will be inferred.) Thldartini will reject,

for example Ax.{a = x&® {f = 5},b = x® {f = true}}, because

as long as we have no evidence that a use of the linking or field the type ofx must predict a single type fa in all of its descen-
extraction operation that the constraint corresponds to will actually dants. One way to mitigate thiew pollution problem is to use

go wrong at run-time. Principal typings never need to contain
Effectively, {R/ Q=-L] is a type that describes no values at all.
An expression with such a type must be eittlead (its result will
never be used, perhaps because its evaluation divergsigeming

(its result will not be used unless the program is put into a larger

let-polymorphism (Section 7) instead ®to bindx, to allow poly-
morphism in the type of . Another is to insert dummy hiding oper-
atorsAx.{a=x\ {f} @ {£ =5},b=x\ {f} @ {f = true}} is ty-
pable. Since this solution depends on guessing which fields will be



defined by the other operand4g it cannot be applied fully auto-
matically; it can be considered a programmer-supplied typing hint.
5.1 Soundness

Proving type soundness fdMartini proceeds as usual, except for
the details of handling constraint sets.

Lemma 5.1 (weakening).Assume M (I"+7 | C). Forany C IFC
andI” D I'itholds that M: (I'" 7 | C'). O

A constraint se€ is solvableiff |- (C) for some substitution
7 . Atyping is called solvable iff its constraint set component is.

Lemmab5.2. Assume @G 1 = andCl- Iy = I. Then M: (I'1 -
71 | C) implies M: (I F 72 | C). O

Lemma 5.3 (substitution). If M : T, then M: 7 (T). O

Lemma 5.4 (term substitution). Assume M (I'B {x+— 7'} I
7 |Cyand N: (@ + 7' | C). Then[x— N]M : (I"+ 7 | C). O
Theorem 5.5 (subject reduction).If M — N and M: (g + 7 | C)
for solvable C, then N (& 7 | C). O

(@ k7 | C) for solvable C, then
O

Theorem 5.6 (progress).If M :
either M is a value or M— N for some N.

Theorem 5.7 (type soundness)Programs (closed terms) with
solvable typings do not get stuck. a

5.2 Testing constraint set solvability

To make Thm. 5.7 useful, this section develops an algorithm to
identify solvable constraint sets.

Define the relatiol€ 00 7 by:
1.VC,s, 1,22 CU{S:L]_HJLQ} O [Si—> (LJ_ULQ)]
2.VC,s,01,L2: CU{S:Ll\Lz} O [S>—> (Ll\Lg)].

Lemma 5.8. If C O 7, then C is solvable if and only if (C)
is. |

if L1#ro,

Lemma5.9. Assume that there is no such that @1 7, and letrg
map every export set variable in C to (and every other variable
to itself). Then C is solvable if and only4if(C) is |

Proof. The “if” direction is obvious. For “only if”, assume that
C is solved by somer;. We claim thatz;, also solveszy(C).
For otherwise there would be @e C such thatry(c) is solved
but 71(79(c)) is not. Their only difference is that;(7o(c)) may
containL in a place where1(c) has another (input) set expression.
The only placel can appear without solving (7¢(c)) is to the left

of “=", socmust have the forre=.1\ Lo ors=.1W 25 (wherein
the latter case ; andz 2 must be disjoint, because (c) is solved).
But in either of these two cases we could find auch thaC O 7,
contradicting the assumption. |

For any constraint s&€ and any/ that occurs irC, let Q‘j be
the least subset ¢f]] such that

1. When(q2 £1\ £2) € Cwith £ € (21\ £2), theng € QF, and
2. When(gz D g1\ £ ) € Cwith £ ¢ £, thengy € QF = ¢ € QF.

ComputingQC for a givenC and/ is a simpIeO( ) graph reacha-
bility problem. The intended intuition is thQ, s “the set ofg’s
that/ can reach according @ and{¢|ge QC} is a lower bound
on the possible values dfin all ground solutions of. LetC O ¢
hold whenz (q) = {¢|q¢€ Qg} for all g mentioned inC and 7
maps all other variables to themselves.

Lemma 5.10. If C O 7 and C is solvable and free of export set
variables, therr (C) is solved. |

Proof. Becaus€ is assumed solvable, any constrainCithat does
not contain at least ongvariable must be solved already, and can
therefore be ignored. Constraints of the fo»n 2> Q1 \ L are also
solved, so the only constraints we need to consider are those of the
formsQ2; D Q1 \ £ andQ#<~.

Given an arbitraryr’ that solve<C, wheneverg € Qf it must
hold that¢ € 7 '(q); this follows directly from the inductive con-
struction on/ Also, if we letr/(q) ber'(q)\ {¢} for q ¢ QC
and7 ’(q) otherwise, therr,/ still solvesC — it would contradlct
the construction oQC if this change caused an unsolved constraint
to appear. Now, if any solution 16 exists at all, therr is also a
solution, because an arbitrary solution can be transformedrinto
label for label by the preceding remarks. O

Theorem 5.11. Constraint sets can be tested for solvability in time
O(nm), where n is the number of constraints and m is the number
of distinct labels in the constraints. O

Proof. The testing procedure consists of first rewriting as much as
possible by Lemma 5.8, and then eliminating the remaining export
set variables by Lemma 5.9. The constraint set now containspnly
variables, and solvability can therefore be decided by Lemma 5.10.
Complexity bound: In the Lemma 5.8 phase, each constraint
is processed at most four times: Once to see if it can be rewritten
immediately, up to twice when set variables on its left-hand side are
instantiated, and once to check whethgc) is solved. If2's are
represented as bit vectors, each visit of the constraint t@kes
time. Lemma 5.9 can obviously be completed in ti). For
Lemma 5.10, th@c’s andz can be straightforwardly constructed
in time O(mn); checklngH—fr (C) takesO(mn) time. O

5.3 Type inference

Define the relation C between typings by{InFr | C1) C
(I F 1 | Cy) iff there exists a type substitution and I C I3
suchthaCy I I'y = 7 (1) andCa IF 72 = 7 (1) andCa I 7 (Cy).

Lemma5.12. If M : Ty and T, C Ty, then M: T,. O

LetT <T'(T is “atleast as precise a¥’') meanM : T =M : T’
for all M. A typing T is principal [29] for M iff M : T and
M:T =T < T’ forall T'. Atyping T is syntactically principal
forMiff M: T andM : T’ = T C T/ for all T'. Becausel C T’
impliesT < T/, a syntactically principal typing fovl is principal.

The definitions directly imply that iT; C T, andT, is solvable,
thenT; is also solvable. Therefore a syntactically principal typing
for a termM is solvable unles! has no solvable typings at all.

Theorem 5.13. The algorithmTYPEINF defined in Figure 4 com-
putes a syntactically principal typing for every typable term. The
algorithm runs in time @nma(n)) where n is the size of the ana-
lyzed term and m is the number of distinct field labels in it.

As a corollary,Martini has principal typings. O

Before we prove the theorem, here are some high-level remarks
about the algorithm. In our description it consists of two phases.
The COLLECT phase processes the input term to collect type equa-
tions and constraints; the RUNIFY phase solves the type equations
by a unification algorithm extended to deal with rows. The col-
lected constraints are not touched (except for the side effects of the
unification step); they appear directly in the principal typing. Im-
plementations will usually perform the two phases in parallel as
co-processes, and check constraint solvability using Thm. 5.11 af-
terward; we leave such refinements to the reader’s imagination.

The recursive syntax-directed COLLECT phase takes two in-
puts: a termM and a type environmenf’ that maps all of
M'’s free variables to distinct type variables. It produces a triple
COLLECT(M, ') = (W, 7,C), whereW is a set of type equations



COLLECT(x,I') = (@, I'(X), @)

COLLECT({E; 1}, T") =
letx = RngeuDoml ;
let. =E~Y(Doml) andz’ = DomE\ ¢ ;
letr, q, s, anday for eachx € x be fresh;
let I (x) be ay for x € x , andI"(x) otherwise;
let (W, 7x,Cx) = COLLECT(I(x), I") for all x € Doml;
letW = Uxepomi (WkU {7x = ax});
let X ={¢+— I""(E({)) | £ € DomE}
in (W, {Zer / q=s},UxepomI SxU{d2 ', s=r }).

COLLECT(M; ® M, I")
letr, q, g1, 02, S, s1, ands; be fresh;
let (W, 73,G;) = COLLECT(M;, I') fori € {1,2};
letC=CiUCU{q2 tn\S, S=s19%, 42 G2\ s1};
letW =Wy UWo U {71 = {r /u=s1}, 2 = {r / 2=%]}
in (W,{r / q=s},C).

COLLECT(M.4,I") =
leta, r, sbe fresh;
let (W,7,C) = COLLECT(M, I")
in WU{r ={l:a,r / o=s}},a,CU{{{} Cs}).

COLLECTM\\ ¢,T") =
letr, g, so, S, anday anda for each? € . be fresh;
letSo={l—oj|lecc}tandl={l—ay|lecL};
let (W, 7,C) = COLLECT(N, I");
letW =WU{r={Zper /g=%}}
in(W,{Zer/q=s},Cu{a#s, s=s\r}).

TYPEINFM) =
let I map each free variable ™M to a fresh type variable;
let (W,7,C) = COLLECT(M, I');
let = RUNIFY (W)
in{(z (N kFx(r) | 7(C).

Figure 4. The definition of the type inference algorithm. The sub-
algorithm RUNIFY (W) will be defined in Section 6.

(of the form 71 = ), 7 is a type expression, ard is a con-
straint set. Note that the inpditis only used to map term variables

ing the type variable namg(x) from the name ok. However, this
does not work in practice, where type variables are represented by
heap-allocated union-find elements to facilitate unification. O

A unifier for a type equation s&V is a type substitutiom such
that every equation im (W) is an identity (remembering that types
are already identified modulo the row structure equation).

Lemma 5.15. Assume thatW,r,C) = COLLECT(M, I") where
I maps each free variable in M to a unique type variable. Let
T =(I'k 7 | C). For each unifierr for W, it holds that M 7 (T).
Conversely, whenever MI’, it holds that there is a unifier for
W such thatr (T) T T'. O

Lemma 5.16. COLLECT(M,I") can be computed in time linear
in the size of M. O

Proof. The only parts of the computation for which this is not
obviously the case are lookups and additiong’iff we represent

I' as atrie, the operations are all linear in the length of the variable
name, so the total time spent here is linear in the sizd.6f O

A most general unifier(MGU) for W is a unifierz for W such
that every other unifier fo can be written ag’ o7 for somer .
The second phase of type inference computes an MGU of the final
equation sewV. Section 6 will construct a function RUNIFY such
that RUNIFY(W) computes one of the MGUs #¥, if it has any,
in time O(nma (n)), wheren is the size of// andmis the number
of distinct field labels mentioned W.

Proof of Thm. 5.13 The correctness of the result of TYPINF fol-
lows from Lemma 5.15 and the property that RUNIFY computes
most general unifiers.

According to Lemma 5.16, the COLLECT phase completes in
time O(n), so the size oWV is O(n) too. Therefore, the computation
(and, implicitly, application) of MGWW) can be completed in time
O(nma(n)) — a detailed argument for this will be given in Section
6. Thus the entire computation has complexdnma(n)). O

54

Superficially, it seems that we have solved type analysid/farti-
ni. To analyze a term, one computes its principal typing (Thm. 5.13)
and then checks whether its constraint part is solvable (Thm. 5.11).
Each step is efficient and relatively simple. So are we happy?

Not entirely. Postponing constraint solving until the end has
practical and theoretical disadvantages. One problem is that the

Incremental constraint simplification

to type variables (not arbitrary types) and it is never changed by constraint parts of the inferred typings can grow quite large, be-

COLLECT, although the equations in the produddmay give
rise to substitutions for the type variables in Déhater.

REMARK 5.14. In a strictiyicompositionalnference algorithm, the
type environmeni” should be an output instead of an input. How-

cause they can track each module operation in the teven those
that are irrelevant for observable behavidfor example, the term
({£ =5} @ {}).£ gets the inferred typingo Fint | s={£},{f} C
s) rather than the more concige I int | @) — which, inciden-

ever, computing the principal environment for any subexpression tally, is also syntactically principal for it.

bottom-up will incur possibly large reconciliation costs when the

Instead, we want ténterleavethe constraint solving (Section

principal environments for two sibling expressions meet each other, 5.2) with other type inference steps. But we must be a little careful;

and would therefore destroy the adverti§eghma (n)) complexity.

The best type inference solution that we could find that produced

I' only as output had complexit®(nlogn+ nma(n)) (which is
worse whenm is small), but even that depended (as our current

if we blindly applied the entire constraint solving procedure from

4A reader of early drafts of this explanation complained thit assumes
that variable names are represented with a fixed finite alpliaktiee input,

algorithm does) on a mutable union-find data structure shared by Whereas the rest of our complexity analysis assumes a comsisnRAM

all the subcomputation’sOne possible solution could be to start
by a-renaming all variables away from each other and then deriv-

3Incidentally, this suggests that a consistently compasitidype infer-
ence algorithm cannot achieve the folkl@®éna(n)) behavior on programs
where the number of free variables in a subexpression may de. ldow-
ever, that is not a real problem; the main point of compositiorfatence is
that the analysisanbe broken at any point in the expression tree, but there
is no obligation to actually break the analysis at every poin

with a word length that expands with the input size such ttiaparts

of the input can be addressed. The reader complained thasinotfair

not to allow the representation of variable names to takeradge of this
increasing word length, and that the complexity bounds otmhtclude a
logarithmic factor to take account of this. We disagree whik bbjection;

we believe it is a common convention in complexity theory to meathe
“size of the input” inbits even when one is working with a cost model
whereinternal operations can work with larger pieces of data at once. This
means we are measuring our algorithm the same way other algesrith
the literature are measured, so comparisons will be meaningful



Section 5.2, a simple term such:ag would get its original princi-
pal typing(x : {f:’a,r /q=s]}F ’a | {£} Cs, @ D q) rewritten
to(x:{f:’a,r /@=L1}+ >a| @) whichis far from principal. To

preserve principality we must make sure that whenever we rewrite

T to T’ it holds thatT = T’ and T C T, in which case we say it is
safeto rewriteT to T'. In this section we identify some rewritings
that are safe.

First, constraints that are already solved can be dropped:

Lemma5.17. Let T=(I'+F7|C)and T=("+7]| {ceC|
—Ikc}). Then itis safe to rewrite T to’T O

Second, it is safe to perform the-less solving ofs variables
described by Lemma 5.8:

Lemma5.18. Let T=(I"+ 7 | C) and assume Cl 7. Thenitis
safe to rewrite T ta (T). O

The construction in Lemma 5.9 is not safe. The one in Lemma
5.10 is only partially safeC 00 7 sets allg's to alower bound on
the possible values of We should onlysethis lower bound when
that entails no restriction on set variables that are visible in the

for these problem terms. Also, as Section 4.4 points out, the naive
approach of previous type systems leads to unfeasible NP-complete
typability in the absence of full type annotations.

Some previous mixin calculi have features not supported by
them-calculus oMartini. Duggan and Sourelis [5] allow different
cases of a function that operates by pattern matching to come from
different modules. Ancona et al. [2] allow extracting an export from
a mixin module with imports, if the types prove that the export does
not depend on the imports.

If we restrictMartini to the A? fragment of them-calculus that
we defined in Section 3.2, we can derive a type system fohthe
calculus with record concatenation. We call this syskBuntie; it
arises by adding a primitive type constructerfor function types
and then fixing th& part of all remaining record types 1.

Our entire development fdvlartini, including the type infer-
ence algorithm and its complexity analysis, carries oveBdatie
without change (except that of course constraint solving)feari-
ables can be omitted).

Bowtie is not the first type system forXcalculus with record

type and environment parts of the typing. We should also exclude concatenation that supports type inference, but to the best of our
variables where the lower bound cannot yet be computed because&nowledge there are no previous systems with a published type-

the Spart of aQ 2 Q\ Sconstraint is still a variable.
Lemma 5.19. Let T=(I"+ 7 | C), and letQ be the least subset

of such that

1. If g appears anywhere ify or 7, then ge Q.

2. 1f (g2 Q\s) eC, thenge Q.
3.1f(qg2d\z)eCthendeQ=qeQ.

LetCO 7, and letT’(q) be 7 (g) when g¢ Q and g otherwise.
Then it is safe to rewrite T to /(T). O

As a simple example of incremental constraint simplification,
consider the ternix @ {£>y,h>z; y = z]}).g. Its inferred but not
simplified typing is(x : {f:’a, g:’b,h:’a,r / q=s]} + ’b | C)
where

|

We first reduce fos variables by Lemma 5.8. The only reduction
in this case i€ 0 [s1 — {f}]; after this we have the same typing
but with constraint set

c = q1 2 {b}, {f}={f}, @ D ql\s,
s2=sw{t}, @ 2q\{f}, {g} Cs2
We now compute the various/’s and getC’' O [q— @,q1 —
{h}].InLemma5.19Q is {q} (asq appears in the type assumption
for x), so we apply just the substitutidal — {h}] to get

o { {n} 2 {n}, {£}={2}, 2 2 fn} \s, }
s2=sw{f}, 5 2q\ (£}, (g} C =2

After dropping solved constraints and using abbreviations for the
unsolved ones, we get the simplified typing

(AR E™) famspr o PGS 2522l

qC {f}, {g} Cs2
5.5 Discussion

q1 2 {h}, si={f}, @ 2ql\s,
s2=sWsl, @ Dq\sl, {g} Cs2

Martini allows compositional type inference for mixin modules
without type annotations. Previous typed mixin module calculi

inference complexity bound as low &(nma(n)). One system

by Rémy [21] can probably be implemented within this bound;
unfortunately the types in this system are excessively inflexible and
it can not reasonably be used for programming. A series of systems
have been defined by Pottier [17, 18, 19], but the only one of these
that has a complexity analysis [19] has complexign®mlogm),
which is significantly more thaBowtie’s O(nma(n)).

Previous type systems for record concatenation include work by
Wand [27, 28], Harper and Pierce [8, 9]eRy [21, 23], Zwanen-
burg [32], Pottier [17, 18, 19], and Palsberg and Zhao [16mi¥'s
system in [23] is the earliest to tolerate type “errors” in dead and
sleeping code. ThBot concept in Pottier's system in [17] is very
similar to the “L” in Bowtie (andMartini).

6. Row unification

In this section we describe an efficient algorithm for computing
most general unifiers modulo the row structure equatinr,
U, R) = (€2:12, f1:71, R). This is used in our type inference
procedure, but we also believe it has some general interest. This
row unification problem has a standard algorithm (see for exam-
ple [20]), but a direct implementation of this is too slow to fit within
theO(nma(n)) complexity we need. The more efficient procedure
we define here may have been independently developed by many
implementers, but appears never to have been written down explic-
itly. We think it deserves to be recorded.

The key idea is to handle an entire row equatigh:r,
o bem 1) = (0T, - b, ) in a single step. Whenever
b= (J/J a unification ofr; = rj’ must be scheduled; labels that ap-
pear only on one side must have corresponding entries added to
the end of the list of the other side. The standard algorithm uses up
to Q(n?) label commutation steps to bring the elements on either
side of the equation into the same order. This corresponds to linear
searches through the two row expressions; with a monolithic solu-
tion we are free to use more efficient data structures such a search
trees or arrays for this purpose.

The only point where our algorithm differs from an implemen-

[7, 4, 1, 12, 13] have not considered type inference, and severaltation of the standard algorithm for row unification is in steps (b)

expect full type annotations for difficult operations. Because of and (c) of the RECUNIF operation in Figure 6. We describe the al-
the row pollution problemMartini sometimes fails to type some  gorithm at a more concrete level than most unification descriptions
terms unless the programmer switches to let-polymorphism (not in the literature. It is usual for such description to allow wholesale

always possible) or inserts dummy hiding operations. In contrast, manipulation of type terms and substitutions; but working at that
previous mixin module systems tend to need full type annotations level would reduce our complexity analysis to pure handwaving.



6.1 Data representation

During row unification (and type inference in general) labels will
be represented as small integers between 1ranthe number

of distinct labels in the program. This allows representing label-
indexed maps as arrays. In the original input labels are usually
strings that must be interned to small integers before type inference;
this can be done in a linear-time pass over the program using a trie
recording indexes for already-seen labels.

In the algorithm type expressions are represented as a di-
rected acyclic graph of pointer-linked memory blocks. We use the
metavariableX for pointers to nodes in the type graph. Each node
has asort from the se TYPE,ROW, QSET,SSET}, correspond-
ing to the syntactic categoriés], [R], [Q| and[S, respectively.
The sorts need not be explicitly present in the graph at run-time,
but it is useful to imagine that they are. Each node also fama
tents which is eitherVAR or £(Xy,...,Xn) where¢ is one of the
following type constructors:

e {./-=-] with kind ROW x QSET x SSET — TYPE.
e (.-, -, for any/, with kind TYPE x ROW — ROW.

e | with kind SSET.

e ., forany., with kind SSET or QSET.

When the contents of a nodéis £(Xy,...,%n), the number and
sorts of node¥; throughX,, as well as the sort of itself, must be
as specified by the kind &f

A node with contentd/AR represents a type (or row or set)
variable of the appropriate sort. Each such variable is represented
by exactly one node; we can thus identify the variable with the node
and do not need explicit names for type variables until and unless

. For each type, row or set varialgfen W, CREATE a node
with the appropriate sort and conteMAR. Let 6 be the
map from eacl® to its corresponding node.

. Replace eaclfr,r’) in W with the pair (BUILDg(7),
BUILDg(7")).

. Do steps (4)-(10) for as long ¥gis not empty. Go to step
(11) whenw becomes empty.

. Select an equatiofX, X’) fromW and remove it fronw.

. IFEQUAL(X,X"), then discard the pair and start over from
step (3).

. If READ(X) = VAR, then execute FUSK, X/,
READ(X")), and start over from step (3).

If READ(X') = VAR, then execute FUSK,X’,
READ(X)), and start over from step (3).

. Seté(Xy,..., %) = READ(X) and setg’(X{,...,Xy) =
READ(X"). (This step will not be reached unless the co
tents of the two nodes have this form.)

. If € £ ¢, then the unification problem is intrinsically unt
solvable. Report failure and terminate the algorithiuhag-
tini has only one constructor of sofYPE, but this can
happen folSSET andQSET.)

. Execute FUSEX, X', £(Xg, ..., %))-

. Execute RECUNIEX;, X/), defined below, for K i <Kk,

and start over from step (3).

(This step is reached whé& becomes empty.) Search

for cycles in the type graph, for example by a depth-fifst

traversal looking for back edges. If any are found, then

11.

12.

we want to output the inferred type textually.

The nodes in the type graph are elements of a union-find data
structure, which provides the following four primitives: EQUAL
(X1, X%2) tests whethek; andX; refer to the same node. REAR)
produces the contents of nodle FUSEX;, X2, {) creates a single
node with content§ and destructively redirects all existing refer-
ences to eithek; or X, such that they now refer to the new node.
(The unification algorithm only performs this operation whén
and X, have the same sort, so the sort of the new node is unam-
biguous.) Finally, one may CREATE a new node with a given sort
and contents. It is well known th&toperations in the union-find
structure can be done in total time at m@gka (k)), wherea is an
extremely slow-growing functiof.

6.2 Consistent graphs

The exposed node®f the type graph are all nodes of s&OW
that are mentioned in the contents of a node whose soot BROW.
That is, the onlyROW nodes that ar@ot exposed are those that
are linked to either not at all or only froROW nodes. The state
of the algorithm isconsistentiff there exists a function) € —
#iin([£]) such thatp(X) = & for all exposed nodeX, and whenever
READ(X) = £:X', X" it holds thaty)(X") = ¥ (X) & {¢} (and(X)
can be undefined X is not of sortROW). Consistency means

stop and report failure.
If this step is reached, then the unification has succeeded.
Return the substitutiofREADOUT(8(3)) | 8 € Dom8}. T
corresponds to the kinding discipline of [20, pp. 647ff]. In particu-
lar, the initial state produced by the caller must be consistent or the
algorithm will not work. Fortunately, it is easy see that the equa-
tion sets produced by the COLLECT procedure of Section 5.3 will
naturlly be represented by consistent graphs. (Each recursive invo
cation of COLLECT constructs an isolated component of the graph

that is initially connected to other components solely through the
unification queu&V, which has no influence on consistency.)

Figure5. Definition of the unification algorithrRUNIFY (W)

6.3 The algorithm

The unification algorithm is defined in Figures 5 and 6. The algo-
rithm keeps a queud/ of waiting equalities, represented as pairs
(X1,X2). Itis an invariant that wheiX;, Xp) € W, thenX; andXp
must have the same sort, whigtust not beROW. In step (4), the
strategy for picking an equation to remove is not important; the
usualrecursiveunification algorithm corresponds to a LIFO queue
that coincides with the implementation language’s call stack.

Step (11) implements theccurs checkwhich is usually de-
scribed as being part of step (6), but the latter is executed too often

that each row variable always appears after the same set of labelso afford doing it there if we want almost-linear complexity. If (con-

(although they may appear in different orders).

Itis an invariant of the algorithm that its state is consistent. This
ensures that we will not have to worry about creating ill-formed
rows that define the same label twice; the mam the definition

5For other type systems thaartini it is easy to add more type construc-
tors, for example " of kind TYPE — TYPE — TYPE. The only fixed
part of the signature is the constructors ROW which must be exactly
“¢:-, " and nothing else.

6 A possible definition iso(k) is the leasi > 1 such that(i,4) > logk,
whereA is a variant of Ackermann’s function [24].

trary to most real-world type checkers that want to report errors to
the user in a readable way) we are not interested in knowimg
the unification failed, it suffices to check the type graph for cycles
once after the unification queue becomes empty.

Notice that part (b) and (c) of RECUNIF is the only place in the
algorithm that specifically concerns rows. All other steps appear
unchanged in the well-known first order unification algorithm.

Theorem 6.1. The RUNIFY algorithm produces a most general
unifier whenever its input has any unifier. If the input does not have
a unifier it will terminate with a failure report. O



This is the RECUNIFX, X’) procedure used in step (10) of
RUNIFY:

a. If the sort ofX andX’ is not ROW, just add(X,X’) toW
and return.

b. (If this step is reached, both f and X’ are exposed
ROW nodes.) Letp,Xg) = GETROWX) and(¢', Xg) =
GETROWX'). For eaclY € (Domy UDom¢’) (in some
arbitrary order), do

1. If £ € (DompNnDome’), add(¢(£), ¢’ (£)) toW.

2. Otherwise, if¢ € Dom ¢: CREATE a new nodeX{
with sort ROW and contentsVAR. Then execute
FUSEXg, X5, (€:¢(€), X)), and sei} := X;.

3. Otherwise, if¢ € Dom ¢': CREATE a new node
with sort ROW and contentsVAR. Then execute
FUSEXg, X, (£:¢'(€), X1)), and selg := X;.

c. Execute FUSEXq, Xy, VAR) and return.

BUILDg(t) is a side-effecting function from type termhido
node names, parameterized by a ridm variables t9X:

BUILDg(3) = 8(8).
BUILDS(g(tL s ~,tn)) =
letX; = BUILDg(tj) for1<i<n
in CREATE a node with contentgX1,...,Xm)
and return its name.

GETROWX) is defined wherX is a node of sorROW and
the unification graph isonsistent

GETROWX) =
case READX) of £:X', X" = let (¢,X"") = GETROWX")
in ({€— X'} B, X")
VAR = (@,X)

READOUT maps a node name in agyclicgraph to a type
term. It depends on a fixed injective mappirgrom node
names to variables of appropriate sorts.

READOUT(X) =
case READX) of
£(X1,...,%) = E(READOUT(Xy),...,READOUT(Xp))
| VAR = K(X)

Figure 6. Helper definitions foRUNIFY

Theorem 6.2. TheRUNIFY algorithm, except for the fin&®EAD-

OUT operations, runs in time @ma(n)), where n is the total size
of the input and m is the number of different field labels mentioned

init. O

Terms: M,N:=--- |letx=NinM
Generalized t-vars3 ::=s|q|r |«

Variable sets: B e Tfin()

Type schemes: ¢ ::=VB.(1|C)
Environments:  I' € [x] ™ [7]u[a]
RLet

letx=Nin M < [x+— N]M

I'(x) =VB.(r|C) VB¢B:1(8)=p

x: (I ()| 7 (C)uC) TPoly

N:('F7|C) B=FTV(r,C)\FTV(I)
M (I'B{x— VB(r|C)} 7| C)

: Tlet
letx=NinM: (I'F+ | C) €

Figure 7. Adding Hindley/Milner polymorphism td/artini to
makeMartini¥. Things not defined here are in Figure 3.

constant number of union-find operations for each graph edge. The
number of edges is bounded by the number of operations already
performed (each edge must have been added at some time), so be-
cause step (11) happens only once, it can at most increase the num-
ber of operations performed by a constant factor.

In total, O(nm) + O(Nn(4m+ 1)) = O(nm) union-find opera-
tions are executed. The work except for these is &§om), so
the total time complexity of the unification algorithm@{nm) +
O(O(nm) a(O(nm))) = O(nma(n)), as required. O

7. Let-polymorphism

BecauséVartini has principal typings, we can add to it Milner’s let-
polymorphism to get a type systeviartini¥ that is toMartini what
the Hindley/Milner (HM) type system (used by languages like ML)
is to the simply typed\-calculus. Figure 7 shows the completely
conventional additions that do this. Note that type schemes have a
constraint component, as is often done in HM extensions involving
constraints.

We know that the additional rules in Figure 7 correctly im-
plement let-polymorphism, becaubtartini¥ types the same pro-
grams as would be typed tartini extended with the single rule

N:(I't7|C) Xx—=NM: (7" |C)
letx=NinM:(I'7"| C/)
which deliberately ignores- and C and is well known to cor-
rectly characterize the power of Milner’s let-polymorphism. Prin-

Proof. Let N be the largest number of operands of any type con- cipal types relative to a giveR in Martini¥ can be computed by

structor; this is assumed to be a constant. Whsrare represented

as arrays, each GETROW operation uses at régst) time plus

the obvious extension of the standard algorithmor one of its
variants. Interleaved constraint simplification yields ground princi-

m union-find operations. Each RECUNIF operation uses at most pal types. Note that, as usual for systems extended with Milner’s

O(m) time plus 4n+ 1 union-find operations. It may add up o

let-polymorphism Martini¥ has only the weaker princip@ypes

pairs toW. The total number of RECUNIF operations is at most not principaltypings

Nn, because step (10) is always done together with (9), which de-
creases by one the number of nROW nodes (which are never
created after step (2)). Therefore, at mNstmpairs are added to
the O(n) initial pairs inW during the algorithm. Steps (1)—(10) of

the main algorithm are executed at m@§Nnm) + O(n) = O(nm)

Note that let-polymorphism is not enough for ML-style mod-
ules. Entire mixin modules can be polymorphic, but not individual
module components, unlike ML structures and functors, which also
have features addressing type abstraction andligm@ond import
problem such as type components in structures and type sharing

times. Each execution spends constant time plus a constant numspecifications. More work is needed to add such featur&saioi-
ber of union-find operations outside RECUNIF. Step (11) uses a ni.



8. Conclusion
8.1 Summary of contributions
This paper makes these novel contributions:

1. Section 4 proves that typability is NP-complete Riviera, the
straightforward system of simple types for tffecalculus, a
calculus of first-class mixin modules with symmetric linking.

[5] D. Duggan, C. Sourelis. Mixin modules. Froc. 1996 Int'| Conf.
Functional ProgrammingACM Press, 1996.

[6] Programming Languages & Systems, 9th European Symp. Rregra
ming vol. 1782 ofLNCS Springer-Verlag, 2000.

[7] M. Flatt, M. Felleisen. Units: Cool modules for HOT langs. In
Proc. ACM SIGPLAN '98 Conf. Prog. Lang. Design & Impl998.

[8] R. Harper, B. C. Pierce. A record calculus based on symmetri
concatenation. Technical Report CMU-CS-90-157R, Caméfgllon

Riviera roughly corresponds to previous mixin module type Univ., 1991.
systems. We point out that the expense comes from the type[9] R. Harper, B. C. Pierce. A record calculus based on symmetri

system checking constraints frasheador sleepingcode.

2. Because our NP-completeness proof (1) works for the restric-

tion of Riviera to the A® subset of th@n-calculus and (2) is in-

sensitive to whether linking is symmetric or asymmetric (over-
riding), we have also proven that type inference is NP-complete

for Wand’s type system for the-calculus with record concate-

concatenation. Ii€onf. Rec. 18th Ann. ACM Symp. Princ. of Prog. Langs.
1991.

[10] T. Hirschowitz. Mixin Modules, Modules, and Extended Recursion in
a Call-by-Value SettingPhD thesis, UniversitParis 7, 2003.

[11] T. Hirschowitz. Rigid mixin modules. Iiseventh International
Symposium on Functional and Logic Programming (FLOPS 2@e04.

[12] T. Hirschowitz, X. Leroy. Mixin modules in a call-by-vaé setting. In

_nation [28]. The only similar previous NP-compIe_teness result programming Languages & Systems, 11th European Symp. &roging
is by Palsberg and Zhao [16] for a more complicated system vol. 2305 ofLNCS Springer-Verlag, 2002.

with subtyping.
3. Section 5 developdlartini, a system of simple types for time-
calculus Martini is conceptually simple, with no subtyping and

a clean and balanced separation between (1) traditional simple
types with type and row variables for determining field types

and (2) constraints for safety of linking and field extraction.

4. Section 5 also develops type inference Nértini, and proves
that Martini has principal typings [29]Martini is the first

[13] T. Hirschowitz, X. Leroy, J. B. Wells. Call-by-value nmiixmodules:
Reduction semantics, side effects, types.Plngramming Languages &
Systems, 13th European Symp. Programmingy 2986 ofLNCS Springer-
Verlag, 2004. More details can be found in [10].

[14] H. Makholm, J. B. Wells. Type inference, principal tygs) and let-
polymorphism for first-class mixin modules. Technical repdetriot-Watt
Univ., School of Math. & Comput. Sci., 2005.

[15] A. Ohori, P. Buneman. Type inference in a database progiag
language. InProc. 1988 ACM Conf. LISP Funct. Progransnowbird,

type system for first-class mixin modules with a type inference Utah, U.S.A., 1988.

algorithm. Its time complexity i©(nma(n)), where the input
has sizen andm distinct field labels, and(n) is negligible.

5. By restrictingMartini to the A subset of them-calculus, we
achieve type inference forXcalculus with symmetric record

concatenation with the same complexity, better than the previ-
ously best published complexity for any type inference algo-

rithm for record concatenation. (Some previous type inference [20) F. pottier, D. Rmy. The essence of ML type inference. In B. C. Pierce

[16] J. Palsberg, T. Zhao. Type inference for record comzdten and
subtyping.Inform. & Comput, 189, 2004.

[17] F. Pottier. A 3-part type inference engine. In ESOP '6D [

[18] F. Pottier. A versatile constraint-based type infesesystemNordic
Journal of Computing7(4), 2000.

[19] F. Pottier. A constraint-based presentation and geizetion of rows.
In Proc. 18th Ann. IEEE Symp. Logic in Comput. S2003.

algorithms for record concatenation without published com- ed. Advanced Topics in Types and Programming Languagespter 10.

plexity analyses may have comparable complexities.)

6. Section 6 presents an efficient implementatiomowf unifica-
tion with a rigorous complexity analysis.

7. We have implemented inference of principal typings Ntur-

tini; our implementation can be downloaded or used on-line at

(URL:http://www.macs.hw.ac.uk/DART/software/Martini/).

8. Section 7 shows how to exterdartini with Milner’s let-
polymorphismto makeMartini¥, which we believe is the first
polymorphic type system for first-class mixin modules.
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